Theory of Computation

Lab #3: Implementing a DFA class, part 1; Generating Javadoc Documentation
The mathematical description of a deterministic finite automaton (DFA) has five components:

· a non-empty, finite set of states Q
· an alphabet S
· a transition function d which maps Q × S to Q
· a unique "start" state (element of Q)

· a set of zero or more "final" states (subset of Q)
In our implementation, the set Q will be the integers from 0 through n - 1 (where n is the number of states in the DFA), and we will include a sixth component, a list of state names to be associated with the state numbers.
Recall that the language L which is recognized by the DFA is the set of all strings in S* which direct the DFA from "start" to any "final" state according to the transition function d.
In this lab, we begin the implementation of a DFA class in Java. A second class, IntSet, is provided to support the DFA implementation. The DFA methods to be implemented in this lab are as follows:

· DFA(int n, String[] L, String startL, String a, int[][] t, boolean[] f): constructor
· finalStates(): returns the set of state numbers of all final states
· printDFA(): pretty-prints the DFA specifications
· printTransitions(): pretty-prints the DFA transitions
· stateName(int i): returns the label for a given state number
· stateNumber(String s): returns the index of a given String in the stateLabel vector
· validLabel(String s): tests whether a given String is a valid state label
· validState(int i): tests whether a given integer is in the proper range to be a state number
· main(String[] args): test method
We will also see how to configure Eclipse to produce Javadoc documentation.
WHAT TO DO:

1. Start Eclipse.
2. Create a new class called "IntSet" inside the finiteAutomata package.

3. Create a new class called "DFA" inside the finiteAutomata package.
4. From our course page on vault (vault.hanover.edu/~wahl), follow the link to Lab 3 documents and open the source code files for IntSet and DFA. Paste the contents of the files over the contents of your newly-created classes in Eclipse.
5. Save your IntSet class and your DFA class.
6. Delete the Hello class from your project.

7. Configure Eclipse to generate Javadoc documentation:

a. Use Project > Generate Javadoc ... to bring up the Javadoc dialog.
b. The first time you generate Javadoc, you have to specify the location of the file "javadoc.exe" in the field "Javadoc Command:" at the top of the dialog; it should be along a path of the form
C:\Program Files\Java\jdk . . . \bin\javadoc.exe
(browse to javadoc.exe on your C drive).
c. Check the button to "Create Javadoc for members with visibility: Private" to generate Javadoc for all classes and members.
d. Under “Select types for which Javadoc will be generated,” check the Coursework project and the finiteAutomata package.
e. Click Next twice to move to the third page of the dialog.
f. Create custom "pre" and "post" tags the first time you generate Javadoc; in the field for "Extra Javadoc options," enter :
-tag pre:cm:Precondition:

-tag post:cm:Postcondition:
g. Click Finish to generate the Javadoc documents.
8. In the Package Explorer window, open the destination folder you specifed for Javadoc and double-click on package-summary.html. You should see all of your FiniteAutomata classes in the class summary section.

9. Follow the various links in the class summary and skim through the Javadoc documentation for your finiteAutomata package.

10. Back in the source-code window, let your mouse linger over class names and method names; notice that the Javadoc comments appear in a pop-up.

11. Click on the "Javadoc" tab at the bottom of your Eclipse perspective. Double-click on a method name (for a class in this package) in your source-code window and see the Javadoc comments appear in the Javadoc window below.

12. To print Javadoc, locate the file "DFA.html” in your Javadoc destination folder. Open DFA.html by double-clicking on it, and print a copy.
13. Skim through IntSet.java and IntSet.html to familiarize yourself with the methods of the IntSet class. Then, run IntSet as a Java application and examine the output to learn more.
14. Skim through DFA.java and DFA.html to learn about the proposed implementation. Ask questions as needed about any items you don’t understand.
15. In the DFA source code, replace all occurrences of “// ???” with Java code to finish the initial DFA implementation. Do your best to answer your own questions; when you’re really stuck, get help from a classmate or from Dr. Wahl.
16. When all syntax errors have been resolved, run your DFA class. Carefully examine the output listing and verify that your methods seem to be working correctly. Fix any problems you find.
17. You are finished with this lab when all the DFA methods have been implemented according to the given specifications, your test code in the main method runs correctly, and you have successfully printed Javadoc documentation for the DFA class.
WHAT TO TURN IN (write your name on each item):
· Printed copy of DFA.html

· Printed copy of your output from running DFA.java
· Electronic copy of DFA.java source code (email attachment)
· Due by Weds 9-28-11
