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HATCHING PLASTICITY UNDER COMPLEX CONDITIONS: RESPONSES
OF NEWT EMBRYOS TO CHEMICAL AND MECHANICAL
STIMULI FROM EGG AND LARVAL PREDATORS

Brian G. Galll, Leticia L. Hoffmann2, and Edmund D. Brodie Jr.2

ABSTRACT.—Environmentally cued hatching plasticity is a common attribute of the eggs of oviparous organisms that
has been especially well studied in amphibians. Nevertheless, this process has been largely overlooked in species with
complex natural histories. We exposed embryos of the rough-skinned newt (Taricha granulosa) to chemical and mechani-
cal stimuli from multiple potential threats, including caddisfly larvae, a major predator on the egg stage of newts. Newt
embryos did not exhibit hatching plasticity toward chemical cues from any treatment but, contrary to prediction, did
delay hatching in response to mechanical stimuli from an egg predator. Observations of predation by caddisfly larvae on
recently hatched newt embryos indicate that caddisflies may prey on multiple life history stages of T. granulosa. The
results of this study indicate that hatching plasticity may be a complicated phenomenon in some taxa and that additional
factors, such as toxicity of eggs or larvae and maternal behavior, may play an important role in the evolution of this
phenomenon.

RESUMEN.—La plasticidad en la eclosion de los huevos originada por senales del ambiente es un atributo comin de
los huevos de organismos oviparos que ha sido especialmente bien estudiado en anfibios. Sin embargo, en especies con
historias naturales complejas, este proceso se ha pasado por alto. Expusimos embriones del tritén de piel dspera (Taricha
granulosa) a estimulos quimicos y mecanicos de multiples amenazas potenciales, incluyendo larvas de insectos del orden
Trichoptera, que son grandes depredadores de huevos de tritones. Si bien los embriones de los tritones no exhibieron
plasticidad en la eclosion al exponerlos a estimulos quimicos de ninguno de los tratamientos, a diferencia de lo que
esperiabamos, retrasaron la eclosién como respuesta a los estimulos mecanicos de un depredador de huevos. Las obser-
vaciones de depredacion de embriones de tritones recién eclosionados por parte de larvas de tricépetros indican que los
tricopteros pueden ser depredadores de los distintos estadios de la historia de vida de T. granulosa. Los resultados de
este estudio indican que la plasticidad en la eclosion puede ser un fenémeno complicado en algunos taxa, y que ciertos
factores adicionales, tales como la toxicidad de los huevos o las larvas y la conducta materna pueden desempefiar un
papel muy importante en la evolucién de este proceso.

Eggs produced by oviparous organisms are  a potential deadly interaction (Warkentin 1995,
vulnerable to changing abiotic and biotic con- 2000, Chivers et al. 2001). On the other hand,
ditions due to their sedentary nature and min-  delayed hatching is often the response of eggs
imal defenses (Orians and Janzen 1974). Other  that co-occur with larval predators (Sih and
than toxic or noxious chemicals, the most Moore 1993). In this case, embryos exhibiting
important defense for developing embryos is a plastic response may be larger and more
likely the ability to adjust the time or develop-  developed, thereby conferring greater swim-
mental stage at which they hatch. Environ- ming ability that enables these individuals to
mentally cued hatching plasticity is now rec- escape early predation (Petranka et al. 1987,
ognized as an important mechanism by which ~ Sih and Moore 1993). Predation risk is not the
organisms modulate the differential costs and only cue used by developing embryos to infer
benefits between these major life history the relative costs and benefits between the
stages (Warkentin 2011a). egg and external environments. Studies have

For most organisms, the direction of plas- documented hatching plasticity in response to
ticity depends on the specific threat perceived —pathogenic bacteria and fungi (Warkentin et
by the developing embryo. For example, the al. 2001, Wedekind 2002), food availability
presence of egg predators often causes embryos  (Voronezhskaya et al. 2004), and environmen-
to hatch early, thereby minimizing exposure to  tal variables such as flooding, dehydration,
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and hypoxia (Miller 1992, Wedekind and Miiller
2005, Warkentin 2011b).

Many embryos develop in complex envi-
ronments where a balance must be reached
between multiple threats. In aquatic environ-
ments where different stage-specific predators
(e.g., egg predators and larval predators) may
be present at the same time, embryos should
assess the survival value of each strategy and
respond with a single approach that minimizes
immediate mortality, or they should integrate
the approaches. Nevertheless, few studies
have attempted to elucidate whether a single
species can respond to different threats with
alternative plastic hatching times. For exam-
ple, Anderson and Brown (2009) exposed
green frog embryos to stimuli from an egg
predator, a larval predator, and both predators
combined. Surprisingly, the embryos res-
ponded to all stimuli by hatching early, indi-
cating that organisms may be limited in the
type of plastic response they exhibit under
complex conditions. Furthermore, additional
factors such as multistage predators (con-
sumes both eggs and larvae), chemical de-
fenses, or maternal behavior could complicate
an embryo’s “decision” to initiate or delay
hatching.

We conducted a series of experiments to
examine hatching plasticity in a species that
possesses multiple complex traits (chemical
defenses and maternal oviposition behavior)
that could influence the hatching response.
Specifically, we tested for the presence of
accelerated and delayed environmentally cued
hatching plasticity in response to egg and lar-
val predators in eggs of the rough-skinned
newt (Taricha granulosa). Lehman and Camp-
bell (2007) previously reported that T. granu-
losa eggs hatch earlier in the presence of cad-
disfly larval odor. However, the lack of ran-
domization and use of females from a wide
geographic range necessitates replication of
this work. The rough-skinned newt is one of
the most toxic organisms on the planet. The
skin of individual adult newts may contain up
to 28 mg of the neurotoxin tetrodotoxin (TTX),
which is the lethal oral dose for as many as 56
humans (Stokes et al. in review). The toxin is
secondarily deposited in the eggs (Wakely et
al. 1966, Hanifin et al. 2003, Gall et al. 2012b)
and is also present in larvae (Gall et al. 2011b).
Tetrodotoxin protects newt larvae from preda-
tory dragonfly nymphs (Gall et al. 2011b), but
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the eggs are extremely vulnerable to predation
by TTX-resistant caddisfly larvae (Trichoptera;
henceforth caddisflies; Gall et al. 2011a).
These interactions suggest that there should
be strong pressure to exhibit early hatching,
and we hypothesize that newt embryos will
hatch early in response to chemical stimuli
from predatory caddisflies. We also conducted
an experiment to determine if mechanical
cues elicit early hatching in this species, as
they do for other amphibians (e.g., Agalychnis
callidryas; Warkentin 1995, 2000, Caldwell et
al. 2010). Finally, we evaluated whether cad-
disflies are truly egg-only predators in preda-
tion trials with newly hatched newt larvae.

METHODS
Animal Collection

All female newts (Taricha granulosa) used
in these experiments were collected in repro-
ductive condition from Soap Creek ponds in
Benton County, Oregon. Newts were trans-
ported to Utah State University and housed
individually in 5.7-L plastic containers with 3 L,
of filtered tap water (henceforth water). They
were maintained at 6 °C to prevent sponta-
neous egg deposition and were fed blackworms
(Lumbriculus variegatus) weekly.

Caddisfly larvae (Limnephilus flavastellus)
and dragonfly larvae (Anisoptera; henceforth
dragonflies), including Anax junius, were col-
lected from the same ponds as Taricha. Cad-
disflies were housed in 37-L aerated aquaria
with 20 L water at 6 °C and fed maple-leaf
detritus (see Gall et al. 2011a for a description
of detritus preparation). Dragonflies were
housed individually in 275-mL glass bowls
and fed blackworms ad libitum. Mayfly larvae
(Baetidae; henceforth mayflies) co-occur with
Taricha at Soap Creek ponds, but at low densi-
ties. Therefore, mayflies were collected in
Cache Valley, Utah, and housed in a 37-L aer-
ated aquarium with a small amount of detritus.
No organism was fed newt eggs or larvae prior
to experimentation. No organism was reused
within or between experiments.

Experiment 1: Response to Chemical Stimuli

Chemical stimuli are an important vector of
information transfer in aquatic environments
(Ferrari et al. 2010), and embryos may alter
developmental timing in response to cues
from egg (speed-up hatching) or larval (delay
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TaBLE 1. List of the cues, treatments, and treatment types from 2 experiments exposing rough-skinned newt (Taricha
granulosa) embryos to various types of cues from control and predatory sources. Blackworms = Lumbriculus variegatus,
caddisfly = Limnephilus flavastellus, dragonfly = Anisoptera, mayfly = Baetidae.

Experiment Cue Treatment Treatment type
1 None Filtered water Control
Chemical Blackworms Control
Chemical Caddisfly larvae Egg & larval predator?
Chemical Dragonfly larvae Larval predator
Chemical Macerated blackworms Control
Chemical Macerated newt eggs Simulated egg predation
Chemical Macerated newt larvae Simulated larval predation
2 None Filtered water Control
Chemical & mechanical Mayfly larvae Control
Chemical & mechanical Caddisfly larvae Egg & larval predator®
aExperiment 3 of this study indicates that in addition to consuming newt eggs, caddisfly larvae may also be able to capture and consume newt larvae.

hatching) predators or the presence of alarm
cues (chemical stimuli from damaged eggs or
larvae; Warkentin 2011b). We exposed devel-
oping newt eggs to water conditioned with
chemical stimuli from one of 7 treatments simu-
lating the presence of egg or larval predators
(Table 1). These treatments included chemical
cues from live (1) blackworms (control), (2)
caddisflies, or (3) dragonflies; cues from mac-
erated (4) blackworms (control), (5) newt eggs,
or (6) newt larvae; or a (7) blank control.

Chemical cues from uninjured blackworms,
caddisflies, and dragonflies were collected in
275-mL glass bowls filled with 200 mL of
water. A piece of plastic screen was placed in
the bottom of the bowl to provide an inert
substrate. The blank control was treated the
same except no animal was added. A single
caddisfly or dragonfly, or 20 blackworms were
placed in each glass bowl. After 48 h, the in-
vertebrates were removed and the stimulus
from all bowls (within one treatment) was com-
bined to eliminate variation in cues from indi-
vidual donors. The solutions were transferred
to 50-mL centrifuge tubes in 40-mL aliquots
and immediately frozen at —80 °C.

We collected cues from macerated black-
worms, newt eggs, and newt larvae by macer-
ating 3.0 g of the appropriate tissue with a
mortar and pestle and combining it with 4 L of
water. This homogenate was thoroughly mixed
and frozen in 40-mL aliquots. For the larvae
alarm cue treatment, 0.75 g of larvae (approxi-
mately 50 larvae) was collected and combined
from 4 females. Larvae hatched 2 weeks prior
to stimulus collection were free-feeding on
Daphnia and possessed no remaining yolk.
The egg alarm cue treatment was prepared by
combining 0.75 g of eggs from 4 different

females (approximately 60 eggs). These eggs
were deposited 1-6 days prior to preparation
and had been separated from the female
shortly after oviposition.

Twelve gravid female newts were trans-
ferred to an environmental chamber at 14 °C
and 12L:12D cycle, injected with 10 uL
LHRH (de-Gly10, [d-His(Bzl)6]-Luteinizing
Hormone Releasing Hormone Ethylamide;
Sigma #12761) to induce egg deposition, and
provided a small piece of polyester fiber as an
oviposition site. The females were monitored
at 07:00 and 19:00 for egg deposition, upon
which the eggs were carefully removed from
the fiber and placed into 2-mL numbered
cups in groups of 5. After all the eggs from one
female were placed into cups, each cup was
randomly assigned to one of the 7 treatments
such that a group of 7 cups received all 7
treatments and the eighth cup from one fe-
male started a new random sequence; if more
or fewer than 7 cups worth of eggs were pres-
ent during one deposition event (i.e., at 07:00),
then the random sequence of all 7 treatments
was completed with the subsequent batch of
eggs (i.e., at 19:00). In total, 444 cups were
filled with 2220 eggs. Each treatment com-
prised at least 305 eggs, of which at least 15
eggs came from a single female. Because fe-
males deposited different numbers of eggs and
because some eggs died prior to hatching, the
number of cups and number of individual eggs
per female was not equal across treatments.
The total number of eggs used from an indi-
vidual female ranged between 110 and 285. A
single female was removed from all analyses
because only 37 eggs were deposited during
the experiment, and that amount did not allow
implementation of all 7 treatments. Dead eggs
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were removed each day throughout the course
of the experiment.

Eggs were exposed to the appropriate treat-
ment stimuli at 12:00 each day for 9 days fol-
lowing deposition. A randomly chosen stimu-
lus vial was thawed in a warm water bath at 14
°C. Five hundred uL of stimulus solution was
pipetted slowly down the side of the cup to
minimize disturbance to the eggs; this cue
concentration is more than twice that neces-
sary to elicit predator avoidance responses in
other amphibians (Takahara et al. 2008). This
process was repeated until all eggs in the
appropriate treatment had received stimulus,
whereupon the pipette tip was changed and
the process was repeated with the next ran-
domly chosen stimulus. The water in each cup
was replaced with clean water every 3 days.
Water was changed by withdrawing the water
into a pipette and immediately replacing it
with clean water; this process minimized dis-
turbance to the eggs. On the tenth day, larvae
were nearing hatching; a final water change
was performed and no additional stimuli were
introduced; if hatching plasticity occurs, expo-
sure to potential predators during the first 24 h
of development is likely to be the critical
phase in facilitating hatching plasticity in newt
embryos (Lehman and Campbell 2007).

Eggs were monitored for hatching at 07:00
and 19:00. When a larva had completely
hatched and was free-swimming (evident by
straightening of the body), it was removed
from the cup with a pipette, and the time to
hatching (hours) and developmental stage were
recorded. Developmental stage (Harrison 1969)
was recorded using an Olympus stereo micro-
scope. The larva was then photographed (Ni-
koni D70 digital camera with a AF Micro
Nikkor 105 mm lens) to determine total length
at hatching. Total length was calculated from
the photos using the photo analysis software
Image] (U.S. National Institutes of Health,
Bethesda, MD).

We examined the effects of treatment on
hatching time, developmental stage, total length
of recently hatched newt embryos, and propor-
tion of embryos that died during the experi-
ment. Data were analyzed using a generalized
linear mixed model with treatment as a fixed-
effect factor. Female was treated as a random
factor, with cup and eggs within a cup nested
within female. Hatching time, developmental
stage, and total length were analyzed with a
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normal distribution with the identity link func-
tion. Egg mortality was analyzed using a bino-
mial distribution with the logit link function. A
cup of 5 eggs was considered the replicating
unit. Eggs within each cup were incorporated
into the model as subsamples. Assessments of
distributional assumptions were based on graphi-
cal analysis of residuals; all assumptions ap-
peared to be adequately met for all response
variables. Analyses were performed using the
GLIMMIX procedure in SAS/STAT software
version 9.2 (SAS Institute, Inc., Cary, NC).

Experiment 2: Response to
Mechanical Stimuli

To determine if mechanical stimuli (i.e., the
physical presence) of a predator affects hatch-
ing plasticity in newt embryos, we exposed
newt eggs to an egg predator (caddisfly larvae;
n = 46), a nonpredator (mayfly larvae; n =
46), or a blank control (n = 49) in a specially
designed experimental chamber that prevented
the invertebrates from consuming the eggs
but permitted some contact and vibrational
stimuli (see below for details).

Several days prior to experimentation, 5
females were injected with 10 ul. LHRH. Fe-
males were given plastic mesh (500 wm aper-
ture) as oviposition sites. Females preferred to
deposit eggs on the edges of the mesh, so we
cut off small pieces of mesh that contained an
egg and attached these pieces to the center of
a circular piece of mesh (6 cm diameter) by
using hot glue. The hot glue was positioned at
the edges of these small pieces and did not
contact the eggs. Three eggs were attached to
each circular piece of mesh.

The experimental container consisted of a
237-mL plastic cup that had most of the bot-
tom cut out; a 5-mm section around the out-
side was left intact to support the circular
piece of mesh (see below). Two pieces of wire
were attached in an X-pattern to the top of
each cup, and the cup was then hung inside a
larger container (946 mL). The wire served to
suspend the bottom of the small cup 3.8 ¢cm off
the substrate. The large container was filled
with 800 mL of water. One circular piece of
mesh, with 3 attached eggs, was placed upside
down inside the small cup. This experimental
apparatus exposed eggs to chemical as well as
mechanical stimuli from predators, such as the
vibrational stimuli an egg would likely experi-
ence when a caddisfly climbs the vegetation
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on which an egg is attached. In addition, the
holes in the mesh were large enough to permit
contact by the tarsal claws of each inverte-
brate, yet prevented the invertebrates from
actually consuming the eggs.

Each experimental apparatus was placed in
an environmental chamber at 16 °C and was
randomly assigned to a blank control, mayfly
(nonpredator), or caddisfly (predator) treat-
ment. Once the newt embryos exhibited physi-
cal movements inside the egg (15 days after
egg deposition), one of the appropriate inver-
tebrate (or no invertebrate) was placed inside
the small cup. A small piece of maple-leaf
detritus (see Gall et al. 2011a for a description
of detritus preparation) was also placed inside
each cup to provide a food source for stimulus
animals. The eggs were monitored daily, and
the hatching date was recorded for each egg.
We were unable to record developmental stage
at hatching or morphological characteristics of
hatchlings because this would have required
removal of the cup, which would have dis-
turbed the remaining unhatched eggs.

To determine whether exposure to mechani-
cal stimuli from potential egg predators af-
fected time to hatching, we compared the days
to hatching between the 3 treatments by using
a generalized linear mixed model, with cup
considered as the replicating unit and eggs
within each cup incorporated into the model
as subsamples. Pairwise comparisons among
the treatments were adjusted for family-wise
type I error using the Tukey method. The
GLIMMIX procedure in SAS 9.2 (SAS Insti-
tute, Inc.) was used for all calculations. Assess-
ments of distributional assumptions were based
on graphical analysis of residuals; all assump-
tions appeared to be met for all response
variables.

Experiment 3: Predation on Newt
Larvae by Caddisflies

We gave caddisflies a recently hatched
newt larva to determine whether caddisflies
are able to consume this toxic prey. Individual
caddisflies (n = 16) were placed in 237-mL
mesh-bottom cups. Eight cups were placed in
a 5.7-L container with 3 L of water and an
aerator. One recently hatched newt larva was
placed in each cup; newt larvae had hatched
fewer than 7 days prior to experimentation and
were free swimming. We recorded the behav-
ior of the larva when it was initially contacted
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by a caddisfly. We checked each cup after 24 h
and recorded whether the newt larva was alive
and apparently uninjured or completely or
partially consumed by the caddisfly.

REesuLTrs
Experiment 1: Response to Chemical Stimuli

Exposure to chemical stimuli from poten-
tial egg or larval predators did not affect time
to hatching (F6,65 = 0.93, P = 0.479; Fig. 1),
total length at hatching (Fg g5 = 0.46, P =
0.798; Fig. 1), or embryo mortality (Fg g5 =
1.88, P = 0.098) for newt embryos. Treatment
had a marginally significant effect on develop-
mental stage at hatching (Fg g5 = 2.17, P =
0.057; Fig. 1); however, the difference in mean
developmental stage between all 11 females
was very small (ranging between 40.11 and
40.29), and post hoc comparisons did not yield
any significant differences between treatments
(all adjusted P > 0.25). Because of the error
associated with visually assigning develop-
mental stage, this difference is unlikely to rep-
resent biologically meaningful responses to
the different treatments. See Hopkins et al.
(2012) for a description of the female effects.

Experiment 2: Response to
Mechanical Stimuli

There were significant differences in hatch-
ing time between newt embryos exposed to
mechanical stimuli from predator, nonpreda-
tor, and control treatments (F 0.86 = 423, P =
0.017; Fig. 2). Post hoc comparisons indicated
that newt embryos exposed to mechanical
stimuli from predatory caddisflies hatched sig-
nificantly later than newt embryos exposed to
a blank control (t = -2.89, P = 0.013; Fig. 2).
Eggs exposed to mechanical stimuli from non-
predatory mayflies exhibited hatching times
intermediate between the control and caddis-
fly treatments. Hatching time in response to
mayflies was not significantly different from
either treatment (P > 0.29; Fig. 2).

Experiment 3: Predation on Newt
Larvae by Caddisflies

Six larval newts were completely or partially
consumed by caddisflies within 24 h (Fig. 3).
The remaining 10 newt larvae responded to
stimulation with a probe by swimming away
and were seemingly uninjured. When a cad-
disfly initially touched a larval newt, the larva
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Fig. 1. The mean (2 SE) time to hatch (A), developmental stage at hatching (B), total length at hatching (C), and pro-
portion mortality (D) for newt embryos exposed to chemical stimuli from one of 7 treatments. Hatching plasticity was
not observed in newt embryos in response to any treatment stimulus.
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Fig. 2. Mean (£ SE) days to hatching for newt eggs exposed to mechanical stimuli from a blank control, nonpredatory
mayflies, and predatory caddisflies. Newt eggs exposed to a caddisfly took significantly longer to hatch than eggs
exposed to a mayfly or a blank control (Fy g5 = 4.23; P = 0.017). Different letters indicate significant differences
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Fig. 3. Recently hatched newt larva (Taricha granulosa)
partially consumed by a caddisfly larvae (Limnephilus flava-
stellus). The larva was alive and free swimming at the start
of the trial.

rapidly swam away. Although the newt larvae
may have died and subsequently been scav-
enged by the caddisflies, we find this explana-
tion unlikely. We have reared thousands of
newt larvae and find them to be exceedingly
hardy in response to food deprivation for 24 h
and to predatory attacks by other invertebrates
(Gall et al. 2011b; personal observation).

DiscussIoN

Exposure to chemical stimuli from an egg
predator, larval predator, injured eggs, or in-
jured larvae had no effect on the hatching
time, developmental stage, total length at hatch-
ing, or mortality in newt embryos. This result
is surprising given the diversity of organisms
that exhibit hatching plasticity in response to
similar cues (Warkentin 2011a), as well as stud-
ies that indicate exposure to kairomones or
alarm cues alone is sufficient to induce these
shifts (Moore et al. 1996, Touchon et al. 2006).
These data add to the growing body of litera-
ture indicating that hatching plasticity is vari-
able both between and within taxa. For exam-
ple, Anderson and Petranka (2003) showed that
another salamander species (Ambystoma macu-
latum) failed to delay hatching in response to
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dragonflies, an important predator of salaman-
der larvae in pond communities. Neverthe-
less, some populations of a closely related
species, Ambystoma barbouri, delay hatching
when exposed to predator kairomones alone
(Moore et al. 1996). A similar study on rough-
skinned newts found embryos hatched approxi-
mately one day early when exposed to chemi-
cal cues from predatory caddisfly larvae (Leh-
man and Campbell 2007); however, the authors
did not randomly assign eggs from a specific
female or population across treatments. There
is tremendous variation among females (even
within a single population) in the time their
embryos take to hatch, which may account for
the observed differences (Hopkins et al. 2012).
The ecological interactions between newt
embryos and their potential predators are com-
plex and may explain the failure of rough-
skinned newts to adjust hatching timing accord-
ing to the simulated predation risk. Female
newts deposit large quantities of tetrodotoxin
in the yolk of their eggs (Wakely et al. 1966,
Hanifin et al. 2003, Gall et al. 2012b). This
toxin is retained by developing embryos through
hatching and metamorphosis and is present
in sufficient quantities to deter predation by
dragonfly larvae at all larval stages (Gall et al.
2011b). Failure to delay hatching in response
to dragonfly kairomones may therefore be due to
alternative antipredator mechanisms that pre-
clude selection on developmental plasticity.
Unlike dragonflies, the caddisfly L. flava-
stellus is resistant to the negative effects of
TTX (Gall et al. 2011a). Moreover, these preda-
tors are extremely abundant and, under opti-
mal conditions, could consume the entire re-
productive output of a newt population in only
36 h (Gall et al. 2011a). Despite the apparent
strength of predation on newt eggs, the behav-
ior of the female newt may mitigate predation
risk for its eggs. Caddisflies are benthic organ-
isms, and L. flavastellus, in particular, do not
generally utilize the upper portions of aquatic
vegetation (Gall et al. 2012a). This behavioral
limitation has yielded a microhabitat that is
used by female newts as an oviposition site
that provides protection from egg predators
(Gall et al. 2012a). Given that newt eggs are
deposited in such a way that reduces preda-
tion pressure, we hypothesized that a plastic
hatching response may only occur when newt
eggs are exposed to mechanical stimuli from
potential predators. This type of stimulus occurs
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immediately prior to a predation event and is
indicative of imminent risk (Warkentin 1995,
2000, Caldwell et al. 2010). In this system,
newt embryos should adjust the timing of
hatching only when the threat of predation is
extremely high because chemical cues alone
may not accurately reflect the level of risk to
each egg. Newt eggs did adjust the time of
hatching when exposed to mechanical stimuli
from caddisflies; however, the response was
opposite of the predicted direction. Newt
embryos hatch underdeveloped (relative to
other salamanders), and young larvae respond
to stimulation with uncoordinated movements
(Gall personal observation). Further, once
hatched, newt larvae would fall to the bottom
of the pond, which is the primary habitat of
these caddisflies. These benthic “detritivores”
were able to prey on mobile newt larvae in the
laboratory, indicating that these insects may
be predators of both newt eggs and newt lar-
vae. Therefore, newt embryos are likely to
either not exhibit hatching plasticity in re-
sponse to chemical cues (as demonstrated in
this study) or delay hatching until the risk of
predation is imminent (i.e., when a caddisfly is
breaking into the egg).

We demonstrated that, although newt em-
bryos do not respond to chemical stimuli from
potential predators, they do delay hatching in
response to the physical presence of caddis-
flies. Surprisingly, this response was in the
opposite direction as expected, and lab studies
indicated that the egg-only predator may in
fact be a threat at multiple life history stages.
Combined, our results indicate that hatching
plasticity is a complicated phenomenon in
Taricha granulosa. Hatching plasticity is likely
to be dependent on the selection regime from
different predators, as well as the life history
stages that they prey upon. Moreover, other
factors such as chemical defenses and mater-
nal behavior are likely to influence the evolu-
tion of hatching plasticity.
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