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ABSTRACT 

 

 

Caddisfly Larvae (Limnephilidae) as Predators of Newt (Taricha granulosa) Eggs: 

Another Player in the Coevolutionary Arms Race Revolving Around Tetrodotoxin? 

 

by 

 

Brian G. Gall, Doctor of Philosophy 

Utah State University, 2012 

 

Major Professor: Dr. Edmund D. Brodie Jr. 

Department: Biology 

 

 A coevolutionary arms-race between garter snakes (Thamnophis sirtalis) and 

newts (Taricha granulosa) is believed to be responsible for the presence of exaggerated 

phenotypes in these species.  In this scenario, tetrodotoxin (TTX) resistance in garter 

snakes has led to the evolution of prey populations that are extremely toxic.  Despite the 

wealth of information acquired on the interaction between these species, very little 

research has been conducted on possible interactions with other predators.  I conducted a 

suite of experiments examining alternative predators on newts, specifically focusing on 

predators of the eggs and larvae.  I tested for the presence of chemical communication in 

a potential egg predator (caddisfly larvae), investigated the basic ecological conditions of 

the interaction between caddisflies and newts, measured the toxicity of larval newts and 

tested for palatability to predatory dragonfly naiads, and more thoroughly explored the 

interaction between caddisfly larvae and newts.  Caddisflies utilize chemical stimuli in 

their environment to detect and avoid potential predators, as well as locate and consume 
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newt eggs.  Larval caddisflies are extremely abundant at one study site (775,000 

caddisfly larvae / 0.2 ha pond), and appear to be resistant to the negative effects of 

ingesting tetrodotoxin.  After hatching, larval newts retain substantial quantities of TTX 

and individuals with more TTX are more likely to be unpalatable to predatory dragonfly 

naiads.  Ovipositing female newts respond to the presence of caddisflies by depositing 

their eggs at the top of the water column where they are out of the reach of most 

predatory caddisflies.  When caddisflies do consume a newt egg, some of the toxin is 

sequestered and may be retained through metamorphosis.  Finally, caddisflies 

preferentially consume newt eggs that contain less toxin.  This has the potential to lead to 

selective pressure against newts with less toxin and ultimately drive an increase in 

toxicity in the adult population.  Collectively, these findings indicate an additional player, 

caddisfly larvae, is likely involved in the arms-race revolving around tetrodotoxin. 

(160 pages) 
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PUBLIC ABSTRACT  

Caddisfly Larvae (Limnephilidae) as Predators of Newt (Taricha granulosa) Eggs: 

Another Player in the Coevolutionary Arms Race Revolving Around Tetrodotoxin? 

by 

Brian G. Gall, Doctor of Philosophy 

Utah State University, 2012 

 Some populations of newts (Taricha granulosa) possess large quantities of the 

neurotoxin tetrodotoxin (TTX) in their skin and eggs.  Many populations of garter snake 

(Thamnophis sirtalis) are resistant to this toxin and can consume large numbers of newts 

with no negative effects.  Despite the wealth of information acquired on the interaction 

between newts and their predator, garter snakes, very little research has been conducted 

on possible interactions between newts and other predators.  I conducted a suite of 

experiments examining for the presence of other predators on newts, specifically focusing 

on predators of their eggs and larvae.  I found a single predator, caddisfly larvae were 

capable of consuming the toxic eggs.  Larval caddisflies are extremely abundant at one 

study site (775,000 caddisfly larvae per pond), and appear to be resistant to the negative 

effects of ingesting tetrodotoxin.  After hatching, larval newts retain substantial quantities 

of TTX and most are unpalatable to predatory dragonfly naiads.  Ovipositing female 

newts respond to the presence of caddisflies by depositing their eggs at the top of the 

water column where they are out of the reach of most predatory caddisflies.  When 

caddisflies do consume a newt egg, some of the toxin is retained in their body tissues.  
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Finally, caddisflies consume more newt eggs when those eggs contain less toxin versus 

eggs that contain large amounts of TTX.  This may cause newt eggs that contain low 

quantities of TTX to more likely to die of predation which could ultimately drive an 

increase in toxicity of the adult population over time.  Collectively, these findings 

indicate an additional player, caddisfly larvae, is a major predator of newts and could be 

involved in the evolution of tetrodotoxin toxicity in newts. 
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CHAPTER 1 

INTRODUCTION 

Coevolution requires reciprocal selection between closely interacting species, 

which may ultimately lead to complementary evolutionary changes (Thompson 1994).  

Reciprocal selection between predator and prey results in a coevolutionary “arms race” 

when antagonistic interactions lead to exaggerated counter-adaptations in both organisms.  

The trait or suite of traits that moderates each species’ adaptations is known as the 

phenotypic interface of coevolution (Brodie and Brodie 1999), and is consequently the 

feature that becomes exaggerated in coevolutionary processes.  In one of the most well 

documented coevolutionary arms races, this phenotypic interface centers on the potent 

neurotoxin, Tetrodotoxin (TTX). 

In this system, the snake predator, Thamnophis sirtalis, have evolved increasing 

TTX resistance to counter elevated toxicity in their toxic newt prey (Taricha granulosa) 

(Brodie and Brodie 1990, 1991).  Throughout the range of the prey, different populations 

of newts and snakes have varying levels of toxicity and resistance (Hanifin et al. 1999; 

Brodie et al. 2002) resulting in a geographic mosaic of coevolution (Thompson 2005).  

Although some population phenotypes are well matched, possibly resulting in strong 

reciprocal selection for these traits, others are mis-matched leading to escape from the 

arms race by the predator (Hanifin et al. 2008).   

Surprisingly, snake-newt interactions are not limited to Thamnophis sirtalis and 

Taricha granulosa.  Similar patterns of coevolution, all revolving around the phenotypic 

interface of TTX toxicity and resistance, have apparently evolved repeatedly and 

independently between several snake species and their newt prey in North America.   In 
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these cases, both Th. couchii and Th. atratus have developed resistance to separate 

species of newts including Ta. granulosa, Ta. sierrae, and Ta. torosa (Brodie et al. 2005; 

Feldman et al. 2009).  With each interaction, the evolution of resistance in the predators 

is the result of similar modifications to the amino acid sequence of the sodium channel 

protein.  Newts of the genus Taricha are not the only amphibians that produce TTX, and 

recent work has found that several other TTX producing amphibian species (including 

two frogs and a salamander) are each preyed upon by different snake species that are 

resistant to TTX via similar molecular patterns (Feldman et al. 2012).  These interactions 

involve multiple species, evolved independently, and occur on multiple continents 

(Feldman et al. 2012). 

The most toxic populations of newts are exploited by snakes so resistant as to not 

suffer negative effects of TTX ingestion (Hanifin et al. 2008).  Yet, these newts are 

tremendously toxic, containing up to 16 mg of TTX, enough to kill 56,000 mice or at 

least 8 humans.  Although the evolution of extreme toxicity in modern newt populations 

may be due to coevolution with garter snakes, the origin of tetrodotoxin in this group 

suggests alternative selective agents must be considered for the existence and 

exaggeration of this phenotype.  Modern newts (members of the family Salamandridae) 

all possess TTX, yet they originated in the middle cretaceous (100 mya), well before the 

origin of garter snakes (50 mya).  This timeline suggests predation by snakes is unlikely 

to be responsible for the initial evolution of TTX in this group and that alternative 

predators should be examined for their potential to influence toxicity. 

Tetrodotoxin is primarily located in the skin of adult newts (Mosher et al. 1964; 

Wakely et al. 1966; Brodie et al. 1974; Hanifin et al. 1999) and successfully repels every 
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known predator except garter snakes (Brodie 1968).  However, TTX can also be found in 

the ovaries and ova of adult females, as well as recently deposited eggs (Twitty 1937; 

Wakely et al. 1966).  TTX has been assumed to serve an antipredator function in the eggs 

as well (Twitty 1966; Daly et al. 1987), but experimental evidence of a defensive 

function is lacking.  The amount of TTX in newt eggs was recently established by 

Hanifin et al. (2003), who measured the level of TTX in individual eggs from several 

females.  This study found high levels of TTX in individual eggs as well as variation 

between clutches from different females. There was little variation in TTX per egg within 

a clutch and clutch toxicity was highly correlated with the skin toxicity of the 

corresponding female.  The correlation between female and egg toxicity led the authors to 

conclude that female toxicity could be influenced via indirect selection on the eggs or 

vice versa.  This correlation indicates that this pathway has the potential to be a major 

factor in the evolution of toxicity in newts. 

The predation regime on newt eggs and larvae has received very little attention, 

but given the high levels of TTX in individual eggs it seems unlikely that many predators 

will be able to consume the eggs.  Nevertheless, two egg predators have been identified.  

One of those predators, adult newts, will readily cannibalize eggs or larvae (Chandler 

1918).  Given that female newts are the origin of the egg toxin and appear to be resistant 

to it (Brodie 1968; Brodie and Brodie 1991), their ability to cannibalize eggs is not 

surprising.  The only other documented predators of newt eggs are caddisfly larvae 

(order: Trichoptera) (Lehman and Campbell 2007; see Chapter 3 herin).  Except for a 

select few species that are secondarily adapted for life on land, caddisfly larvae are 

entirely aquatic (Wiggins and Currie 2008).  Although most larvae are primarily 
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considered benthic detritivores, they have been documented consuming the eggs of other 

amphibians and fishes (Murphy 1961; Dalrymple 1970; Fox 1978; Rowe et al. 1994; 

Richter 2000).  In addition, Anderson (1976) demonstrated that animal matter is 

important for normal caddisfly growth and development, and that caddisfly larvae are 

likely facultative carnivores, consuming animal matter whenever available. 

The goal of this research is to elucidate the predator-prey dynamics between newt 

eggs and larvae and their predators in an effort to determine the potential for these 

interactions to influence the evolution of toxicity in newts.  Specifically, I will examine 

the interaction between caddisflies and newt eggs, as well as between larval newts and 

predatory dragonfly nymphs. 

Chapter 2. Due to structural complexity and turbidity, communication in aquatic 

environments is often dominated by the use of chemical cues (Ferrari et al. 2010). These 

cues are used for all manner of communication including locating food or mates and 

avoiding predators (reviewed by Ferrari et al. 2010).  Chemical stimuli may therefore be 

an important vector for the transmission of information between newt eggs and predators, 

including caddisfly larvae.  It is unknown if chemical cues are used by caddisflies (order 

Trichoptera) to acquire information in their environment.  This chapter will examine 

whether caddisflies detect and avoid predators solely through the use of chemical stimuli, 

as well as test for the presence of a chemical alarm cue, which would further enhance 

their avoidance behavior.  Because selection by predators may be one of the most intense 

interactions an organism experiences, utilization of chemical cues by caddisflies in this 

context would necessitate the expansion of our analysis of their use during interactions 

with toxic newt eggs. 



5 

Chapter 3.  Almost nothing is known regarding the suite of predators capable of 

consuming newt eggs.  This chapter will identify the aquatic invertebrates that consume 

newt eggs in the laboratory.  Tetrodotoxin inhibits the propagation of action potentials 

(Narahashi et al. 1967); therefore growth may be negatively affected in caddisflies that 

consume these eggs.  I will also provision caddisflies with eggs and measure a metric of 

growth (change in case length) over time to determine whether egg consumption is likely 

to have a positive or negative effect on caddisfly fitness.  In addition, I will estimate the 

abundance of caddisflies at a study site to determine the scale at which this interaction 

could take place in a natural pond, as well as the potential for caddisflies to be a selective 

force on the newt population through egg predation. 

Chapter 4.  The focus of this chapter will be measuring tetrodotoxin in newt 

larvae and evaluating how toxicity influences interactions with predatory dragonfly 

nymphs.  Indirect experimental evidence from Twitty and Johnson (1934) and Twitty 

(1937) indicates tetrodotoxin levels decline rapidly in newt larvae, likely rendering them 

palatable to potential predators.  Using a competitive inhibition enzymatic immunoassay 

(CIEIA), I will measure the amount of tetrodotoxin present in newt larvae at three 

different developmental stages, as well as recently metamorphosed juveniles.  

Tetrodotoxin is believed to serve a defensive function in most organisms, and 

successfully repels almost all predators of adult newts (Brodie 1968).  I will also expose 

newt larvae to predatory dragonfly nymphs (Anax junius) to determine if sufficient 

quantities of TTX remain after hatching to function in defense. 

Chapter 5. This chapter will more deeply explore the interaction between newts 

and caddisflies to determine their potential to influence toxicity in adult newts.  
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Specifically, I will address four questions.  First, do caddisflies respond behaviorally to 

newts?  I will expose caddisflies to a variety of chemical stimuli they would likely 

encounter during a predatory interaction with newt eggs to determine if these cues are 

used to locate eggs.  Second, do newts possess strategies that limit predation on their 

eggs?  Many species of amphibians and insects detect and avoid egg and larval predators 

when depositing eggs (e.g. Chesson 1984; Resetarits and Wilbur 1989).  I will examine 

the behavior of ovipositing female newts in response to predatory caddisflies and 

determine whether newts avoid depositing eggs in microhabitats that are relatively risky 

for their offspring.  The fitness advantage of this behavior will be verified in field trials.  

Third, is the TTX present in newt eggs sequestered by caddisflies?  Caddisflies will be 

provisioned with newt eggs to determine if the toxin is sequestered.  These results will be 

verified by collecting and freezing caddisflies in the field and measuring the amount of 

TTX present in these wild-caught specimens. Finally, what is the potential for caddisflies 

to indirectly select for elevated toxicity in newts?  Caddisflies will be provisioned with 

eggs of varying toxicity to determine if a preference exists for lower toxicity eggs.  The 

presence of such a preference could lead to selection on the newt population for higher 

toxicity (Hanifin et al. 2003), thereby demonstrating the potential for reciprocal selection 

between newts and caddisflies. 
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CHAPTER 2 

BEHAVIORAL AVOIDANCE OF INJURED CONSPECIFIC AND PREDATORY 

CHEMICAL STIMULI BY AQUATIC CADDISFLY LARVAE (HESPEROPHYLAX  

OCCIDENTALIS)
1
 

Prey animals often encounter situations that hinder their ability to conduct normal fitness-

enhancing behaviors.  Mating and foraging are frequently interrupted by predator 

vigilance and avoidance, and antipredator behavior.  Many caddisfly larvae build 

protective cases that are carried with them throughout the aquatic lifecycle.  However, 

they are still vulnerable to predation, yet it is unknown the extent caddisflies use 

chemical cues for predator recognition and avoidance.  We exposed larval caddisflies 

Hesperophylax occidentalis (Banks, 1908) to predatory, conspecific, and heterospecific 

chemical cues to determine if caddisfly larvae can use chemical stimuli alone for predator 

recognition and avoidance.  Exposure to predator and injured conspecific chemicals 

elicited significant decreases in activity, while exposure to injured and uninjured 

heterospecific chemicals yielded no significant change in activity.  The extended latency 

to move following exposure to predator kairomones indicates larval caddisflies utilize 

chemical cues for predator recognition and avoidance, and a similar decrease in 

movement associated with exposure to injured conspecifics suggests the presence of a 

chemical alarm cue. 

  

                                                 
1
 Coauthored by Brian G. Gall and Edmund D. Brodie, Jr. Reprinted with permission of NRC Research 

Press from the Canadian Journal of Zoology Vol. 87, pages 1009-1015, 2009. 
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INTRODUCTION 

Prey animals must often balance activities such as foraging and reproduction with 

predator avoidance (Lima and Dill 1990; Lima 1998).  Predator avoidance and 

corresponding antipredator defenses are inherently costly because prey must forgo 

activities that would otherwise enhance fitness (Lima and Dill 1990; Lima 1998).  

Therefore, prey should be able to accurately measure the current level of predation risk 

and react accordingly to minimize the costs of this trade-off (see reviews in Lima and 

Dill 1990; Lima 1998). 

Prey use a variety of behaviors to measure and respond to the threat of predation.  

In aquatic ecosystems where predators are often cryptic and sedimentation or dense 

vegetation frequently reduces visual acuity, chemical cues can provide reliable 

information in the absence of all other stimuli (see review in Kats and Dill 1998).  

Specifically, aquatic prey often use chemical cues such as kairomones and alarm cues to 

assess predation risk and decrease their probability of predation.  Kairomones are 

chemical stimuli that elicit beneficial behavioral changes in heterospecific receivers 

(Brown et al. 1970).  When exposed to predator kairomones, aquatic organisms often 

reduce activity, increase drift, increase shelter use, or a host of other predator avoidance 

behaviors (see reviews in Wooster and Sih 1995; Kats and Dill 1998).  Alternatively, 

alarm cues are chemical stimuli released by injured individuals which elicit similar 

responses as predator kairomones when received by nearby conspecifics (Smith 1992; 

Chivers and Smith 1998).  Alarm cues function to warn conspecifics of immediate danger 

(Smith 1977; Smith 1992; Mathis and Smith 1993a; Chivers and Smith 1998) or attract 
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additional predators that disrupt the predation event (Mathis et al. 1995; Chivers et al. 

1996a; Chivers and Smith 1998).  More recently, Chivers et al. (2007) demonstrated that 

alarm cues may also provide protection against pathogens, parasites, and ultraviolet-B 

radiation (at least in fishes).  Some species have evolved to respond to alarm cues from 

sympatric heterospecifics that occupy the same prey guild (Mathis and Smith 1993b; 

Brown et al. 2001; Mirza and Chivers 2001a).  This cross-species response is most likely 

to occur in species occupying the same prey guild and microhabitat, and having the same 

predators.  Under these conditions, responses to heterospecific alarm cues should provide 

similar survival benefits as a response to conspecific alarm cues.  In fact, several studies 

have documented the increased survival benefits experienced by organisms responding to 

chemical alarm cues.  For example, Wisenden et al. (1999) demonstrated that the 

amphipod Gammarus minus Say, 1818, survives encounters with green sunfish (Lepomis 

cyanellus Rafinesque, 1819) longer when they are simultaneously exposed to conspecific 

alarm cues.  Similar fitness benefits experienced by prey responding to alarm cues have 

also been found in amphibians and fishes (Hews 1988; Mathis and Smith 1993a; Chivers 

et al. 2002). 

Invertebrates use chemical cues extensively, yet little is known about the use of 

chemical cues in one of the largest orders of aquatic insects.  Caddisflies (Trichoptera) 

are one of the most widely distributed aquatic insect orders with 1400 recognized species 

in the United States and Canada alone (Merritt et al. 2008).  Except for a few species, 

caddisfly larvae (henceforth caddisflies) are entirely aquatic and occupy a great diversity 

of freshwater habitats (Merritt et al. 2008).  Many species of caddisflies construct 

portable cases that function as defense against some predators (Otto and Svensson 1980; 
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Johansson 1991; Nislow and Molles 1993; Wissinger et al. 2006) and may increase the 

efficiency of respiration (Williams et al. 1987).   

Even with defensive cases, caddisflies are still vulnerable to a variety of 

vertebrate and invertebrate predators, and previous work on caddisfly-predator 

interactions has primarily focused on the direct influence of predation (e.g. Otto and 

Svensson 1980; Kohler and McPeek 1989; Johansson 1991; Johansson and Nilsson 1992; 

Nislow and Molles 1993; Johansson and Englund 1995; Otto 2000; Wissinger et al. 

2006).  Nevertheless, some empirical evidence exists to suggest caddisflies use chemical 

cues to detect predators.  Kuhara et al. (2001) found that caddisflies exposed to sculpin 

Cottus nozawae Snyder, 1911 stimuli reduced activity and food intake during the most 

risky time of day.  However, the experimental design in that study permitted both 

chemical and hydrodynamic cues.  Malmqvist (1992) examined caddisfly activity in 

response to chemical cues from predators, but got conflicting results between the two 

caddisfly species tested.  In addition, the study was weakly replicated and statistical 

analyses were not performed on the caddisfly data.  Pestana et al. (2009) exposed 

caddisflies to predatory chemical cues and a pesticide and found respiration rates 

decreased with pesticide exposure but increased when exposed to predators.  Experiments 

by Boyero et al. (2006) eliminated all but chemical cues and found that larvae adjusted 

their selection of case type according to the specific predatory threat.  Although these 

studies suggest caddisflies utilize chemical cues, the extent to which chemical cues are 

used for immediate predator recognition and predator avoidance behavior is unknown.  In 

addition, it is unknown if caddisflies possess chemical alarm cues which would further 

enhance their ability to detect and avoid predators. 
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To determine if caddisflies utilize chemical cues in immediate predator avoidance 

behavior and to determine if caddisflies possess a chemical alarm cue, we examined the 

behavioral response of the caddisfly Hesperophylax occidentalis (Banks, 1908) to 

chemical stimuli from (1) a potential predator (rainbow trout, Oncoryncuss mykiss 

(Walbaum, 1792)), (2) injured conspecifics, (3) injured heterospecifics (the amphipod 

Gammarus lacustris G.O. Sars, 1863; henceforth amphipod) known to possess chemical 

alarm cues (Wudkevich et al. 1997), (4) uninjured heterospecifics (G. lacustris) and (5) a 

blank control. 

 

MATERIALS AND METHODS 

Animal Collection and Maintenance. Caddisflies used in this study were collected 

on 29 October and 19 November 2008 from a single pond (41.5709ºN, -111.8485ºW) in 

Paradise, Utah.  Caddisflies were collected by dip net and placed in plastic buckets for 

transport to Utah State University.  Larvae were then transferred to a 37-L glass aquarium 

containing 15-L of tapwater filtered by reverse osmosis (henceforth “tapwater”).  Larvae 

were transferred to the holding aquarium by draining most of the water in the buckets and 

dumping all larvae into the holding aquarium.  This method was used to transfer test 

larvae to prevent acclimation to the simulated predation event (see below).  The aquarium 

was kept in an environmental chamber at 16.5 °C and a 12 h light : 12 h dark cyle.  

Larvae were fed ad libitum on timothy hay pellets (Bunny Basics/T, Oxbow Pet Products, 

Murdock, Nebraska, USA). 
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While collecting caddisflies, we sampled (hook and line) and visually identified 

the presence of rainbow trout in the collection pond.  We therefore assume the caddisflies 

used in this study were not naïve, but were experienced with trout predators. 

Amphipods were collected from the same pond as the caddisfly larvae on 19 

November 2008.  The amphipods and a small amount of detritus (food) were transferred 

to a 37 L aquarium with 15 L of tap water and maintained in the same environmental 

chamber as caddisfly larvae. 

Stimulus Preparation. Hesperophylax occidentalis larvae were tested with five 

different stimuli: (1) blank tap water control (N = 20), (2) uninjured amphipods (N = 20), 

(3) injured amphipods (N = 20), (4) injured caddisfly larvae (N = 20), and (5) rainbow 

trout (N = 20; Table 2.1).  All stimuli (except rainbow trout stimulus, which was frozen 

following preparation) were prepared with tap water maintained at 16.5 °C with an 

aerator and used immediately following preparation. The rainbow trout treatment was 

prepared by catching four rainbow trout (fork length, range: 24.0–25.5 cm) by hook and 

line and placing two each into 39-L containers with 20-L of tap water.  The trout were 

removed from the container 1 hr after introduction, and immediately returned to the pond 

of capture after stimulus collection.  The stimuli from the two containers was 

homogenized and frozen at -80 C in 2-L aliquots after collection.  Although rainbow trout 

were sampled from a separate pond as the caddisflies, caddisflies were present in the 

pond with stimulus trout.  We thus can not rule-out the presence of dietary cues in the 

trout stimulus. 

Immediately prior to testing, the trout stimulus was thawed and maintained at 16.5 

°C with an aerator.  The injured caddisfly treatment was prepared by crushing 20  
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Table 2.1. Treatments tested in experiments 1 and 2, including sample size, mean mass 

(g) of larval caddisfly Hesperophylax occidentalis in each treatment, mean latency to 

emerge (s), and mean latency to move (s). 

 

   Latency (s)  

Treatment Sample Size Mass (g) Emerge Move 

Experiment 1 

Blank Control 20 0.157 ± 0.02 23.00 ± 5.34   55.10 ± 11.41  

Rainbow Trout 20 0.173 ± 0.02 102.50 ± 14.16 117.40 ± 15.60 

Experiment 2     

Blank Control 20 0.163 ± 0.06 42.70 ± 8.97 49.15 ± 8.36  

Uninjured Amphipod 20 0.169 ± 0.02 32.20 ± 6.73 45.00 ± 7.70 

Injured Amphipod 20 0.174 ± 0.02 56.10 ± 10.55 62.40 ± 11.35 

Injured Caddisfly 20 0.177 ± 0.07 95.35 ± 17.00 101.10 ± 16.73 

Note: Values are mean ± SE. 

 

 

caddisflies in 800 ml of tap water with a mortar and pestle.  The caddisfly larvae were 

starved for seven days prior to stimulus collection to remove any food cues.  Stimulus 

from injured amphipods was prepared by grinding 30 individual amphipods, starved for 

72 hrs, in 800 ml of tap water using a mortar and pestle.  The uninjured amphipod 

stimulus was prepared by placing 30 individuals, without food, in a 1-L plastic container 

with 800 ml of tap water for 72 hrs prior to experimentation.  All solutions were filtered 

through 100% polyester (Poly-Fil, Fairfield Processing Corp., Danbury, Connecticut, 

USA) to remove large solid particles.  Stimuli were coded prior to experimentation so the 

observer was blind to treatment selection. 

Behavioral Bioassays. Two experiments were performed between 1300 and 2000 

on 5 and 26 November 2008.  In experiment 1, caddisflies were exposed to rainbow trout 

stimuli and a blank control to determine whether larvae utilize predatory chemical cues in 

predator recognition and avoidance.  These trials were conducted in a plastic container 

(9cm × 9cm, 6cm height) with 140 ml of stimulus.  In experiment 2, caddisflies were 

exposed to a blank control, as well as stimulus water from uninjured amphipods, injured 
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amphipods, and injured conspecifics.  Experiment 2 was conducted to determine the 

presence of chemical alarm cues in caddisfly larvae, as well as whether cross species 

responses to heterospecific alarm cues occur in this system.  To ensure a strong 

concentration of stimuli and to minimize the unnecessary sacrifice of caddisflies and 

amphipods, these trials were conducted in 35mm × 10mm round plastic dishes with 10 ml 

of stimulus.  All trials were conducted inside an environmental chamber at 16.5 °C.  Prior 

to each trial, the test container was rinsed with tap water and a randomly chosen 

treatment was poured into the test container.  A caddisfly was selected from the holding 

aquarium, grasped between the thumb and forefinger, and held for 3 seconds.  The larva 

was then dropped into the center of the test container from 1 cm above the stimulus water 

and the trial began.  This method simulates a predatory attack (Johansson 1991; 

Johansson and Englund 1995) and is similar to that used in Lefcort et al. (2000); larvae 

retreated into their protective case when grasped.  After dropping the larva into the test 

container, the latency to emerge from the case (time between start of trial and emergence 

of the head, but not legs) and latency to begin moving (time between start of trial and 

emergence/movement of the legs) were recorded.  Upon completion of testing, larvae 

were weighed to the nearest 0.01g and maintained in a holding aquarium.  There was no 

difference in the mass of larvae in the six treatments (Kruskal-Wallis: H = 7.80, P = 

0.10).  Individual larvae were tested only once. 

Statistical Analysis.  Data from experiment 1 were analyzed with a Mann-

Whitney rank-sum test (SigmaPlot version 15; Systat Software, Inc., San Jose, California, 

USA).  Data from experiment 2 were analyzed by Kruskal-Wallis tests (Minitab version 

15; Minitab Inc., State College, Pennsylvania, USA) followed by nonparametric multiple 
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comparisons (WINKS SDA version 6.0; Texasoft, Cedar Hill, Texas, USA).  We 

performed linear regressions (SigmaPlot version 11; Systat Software, Inc., San Jose, 

California, USA) to test for differences in response time between different-sized 

caddisflies. 

 

RESULTS 

Caddisflies significantly increased their time to emerge from cases (Mann-

Whitney U test, U = 53, P < 0.001; Fig. 2–1A) and begin moving (Mann-Whitney U test, 

U = 96.5, P = 0.005; Fig. 2–1B) when exposed to chemical stimuli from rainbow trout 

compared with the blank control (experiment 1, Table 2.1).  In experiment 2, there were 

significant differences among larval responses to the four stimuli for both response 

variables (latency to emerge: Kruskal-Wallis test, H = 13.37, P = 0.004; Fig. 2–2A; 

latency to move: Kruskal-Wallis test, H = 10.04, P = 0.018; Fig. 2–2B).  When exposed 

to chemicals released by injured conspecifics, caddisflies also showed a significant 

increase in latency to emerge (Nonparametric multiple comparisons: Q = 2.73, P < 0.02), 

and significantly increased the latency to begin moving (nonparametric multiple 

comparisons: Q = 2.55, P < 0.05), compared with the blank control (Figs. 2–2A, 2–2B; 

experiment 2, Table 2.1).  When larvae were exposed to chemical stimuli from injured 

amphipods, they exhibited responses intermediate of the blank and trout or injured 

caddisfly treatments; however, this response was not significantly different from the 

blank control for either response variable (all P values >0.50; Figs. 2–2A, 2–2B; 

experiment 2, Table 2.1).  Finally, larvae exposed to water containing uninjured  
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Fig. 2–1. Responses of larval caddisfly Hesperophylax occidentalis exposed to chemical 

stimuli from a predator (rainbow trout, Oncoryncuss mykiss) and a blank control. (A) The 

latency (mean ± 1 SE) for the heads of caddisflies to emerge from the cases. Mann–

Whitney U test: *, P < 0.001, (B) The latency (mean ± 1 SE) for caddisflies to emerge 

from cases and begin moving. Mann–Whitney U test: *, P < 0.005. Sample sizes are 

given within the bars. 
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Fig. 2–2. Behavioral responses of larval caddisfly Hesperophylax occidentalis exposed to 

chemical stimuli from injured conspecifics (Inj Caddis), injured heterospecifics 

(amphipod Gammarus lacustris; Inj Amph), uninjured amphipods (Amph), or a blank 

control (Blank). (A) The latency (mean ± 1 SE) for the heads of caddisflies to emerge 

from cases. Kruskal–Wallis ANOVA: P = 0.004. (B) The latency (mean ± 1 SE) for 

caddisflies to emerge from cases and begin moving. Kruskal–Wallis ANOVA: P = 0.018. 

Different letters above bars indicate significant differences between treatments (P < 

0.05). Sample sizes are given within the bars. 
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amphipods did not alter activity compared with the blank control (all P values >0.50; 

Figs. 2–2A, 2–2B; experiment 2, Table 2.1). 

 Larvae that emerge from the case but do not immediately begin moving may be 

attempting to acquire more information from the chemical stimuli or the surrounding 

environment.  Therefore, the difference between latency to move and latency to emerge 

may indicate additional chemoreception or predator inspection behavior.  The latency to 

emerge was subtracted from the latency to move for each test larva, and there was no 

significant difference between the treatments for this behavior (Kruskal-Wallis test: H = 

6.12, P = 0.106). 

Because the larvae varied in size within a treatment and because ontogenetic 

changes in antipredator response occur in other prey species (Puttlitz et al. 1999; Mathis 

and Vincent 2000; Brown et al. 2001; Marcus and Brown 2003), we used linear 

regression to look for differing responses between larvae of different sizes in each 

treatment; where necessary, data were transformed with a square-root function to meet 

assumptions of normality.  A significant correlation between mass and either latency 

behavior was detected in only one treatment.  Within the injured caddisfly treatment, 

larger larvae took longer to emerge from cases and begin moving (emerge: F[1,18] = 6.19, 

P = 0.02; move: F[1,18] = 4.28, P = 0.05; Figs. 2–3A, 2–3B). 

 

DISCUSSION 

 Caddisflies showed a significant increase in time to egress from their protective 

cases when exposed to chemical cues from predatory rainbow trout.  The threat of  
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Fig. 2–3. Mass (g) of larval caddisfly Hesperophylax occidentalis in the (A) blank 

treatment in relation to the latency to move (R
2
 < 0.002, P = 0.86) and the (B) injured 

caddisfly treatment compared with latency to move (R
2
 = 0.19, P = 0.05). Data for 

injured caddisfly treatment were transformed with a square-root function. 
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predation is not constant, and the level of risk prey experience can fluctuate extensively 

(Lima and Dill 1990).  Caddisflies that are able to adjust their behavior to the immediate 

level of predation risk should have a higher probability of survival.  Larvae remaining 

inside their protective case after a predator has been chemically identified should reduce 

the likelihood of being detected and attacked.  Rainbow trout are active predators that 

extensively utilize visual and hydrodynamic (i.e. lateral line) cues during foraging in 

clear and turbid waters (Montgomery et al. 2002, Rowe et al. 2003).  The prey capture 

efficiency of rainbow trout decreases with reductions in prey movement (Ware 1973), 

and caddisflies that remain motionless and feign death after a predatory attack do indeed 

increase their probability of survival (Johansson 1991; Johansson and Englund 1995).   

The combination of chemical information clearly enhances this antipredator response and 

should result in an even greater reduction of predation risk. 

The use of predator kairomones by caddisflies is not limited to immediate changes 

in activity.  When exposed to chemical cues from three different predators (dragonfly 

niads, larval fire salamander (genus Salamandra Laurenti, 1768), and brown trout (Salmo 

trutta L., 1758)), caddisflies adjusted their choice of case type according to the level of 

predation risk (Boyero et al. 2006).  When larvae were removed from their cases and 

given a choice between mineral and organic cases (mineral cases provide greater 

protection from many predators; Otto and Svensson 1980), those exposed to chemical 

cues from potential predators entered cases faster and consistently chose mineral cases 

over organic cases (Boyero et al. 2006).  The combination of immediate responses to 

perceived predatory threat and adaptive long-term behavioral responses should minimize 

the risk of predation for caddisfly larvae. 



25 

The decrease in activity exhibited by caddisfly larvae in response to injured 

conspecifics was similar to the response to trout kairomones, indicating the presence of a 

chemical alarm cue.  Alarm cues have previously been documented in a variety of aquatic 

organisms (reviewed by Chivers and Smith 1998), but not in Trichoptera.  The presence 

of a chemical alarm cue increases the probability of prey detecting a predator that has 

recently attacked a conspecific.  Alternatively, as demonstrated by Mathis et al. (1995), if 

the alarm cue also attracts additional predators, the predation event might be disrupted 

and the sender may survive the encounter.  This model seems problematic in a prey 

organism that is swallowed whole; however, fishes often swallow caddisflies and 

subsequently spit them out in an effort to dislodge them from their protective case 

(Johansson 1991; Johansson and Englund 1995).  This process can be repeated multiple 

times, and may provide ample opportunity for the release of the alarm cue and attraction 

of other predators.  Nevertheless, how the alarm cue functions in wild caddisfly 

populations remains to be studied. 

It is likely the caddisflies used in this study were experienced with trout, and 

larger caddisflies reduced activity to a greater extent than small larvae when exposed to 

the alarm cue (Fig. 2–3B).  Large caddisflies are at a higher instar than smaller 

individuals and should therefore be older and presumably more experienced with local 

predation threat.  The increased antipredator response with increasing mass (i.e. age) 

suggests that some component of learning may be involved in the larvae’s response to the 

alarm cue.  Other freshwater insects have been shown to use learning in predator 

recognition and avoidance.  By pairing the alarm cue with novel predatory chemical 

stimuli, damselfly and mosquito larvae can learn to avoid novel predators (Wisenden et 



26 

al. 1997; Ferrari et al. 2007). With learning an important component of predator 

recognition and avoidance, further research should focus on its role, as well as predator 

diet, on caddisfly antipredator behavior. 

Caddisflies did not significantly increase the latency to emerge from their case in 

response to amphipod alarm cue.  However, a trend toward reduced activity is present 

(Figs. 2–2A, 2–2B).  If caddisflies were to reduce activity toward amphipod alarm cues it 

would likely confer survival benefits because receivers would increase the chance of 

detecting nearby predators.  On the other hand, if a predator is consuming heterospecifics, 

the presence of heterospecific alarm cues may indicate some degree of safety from 

predation and result in a weaker antipredator response.  Predator recognition is often 

influenced by the diet of the predator (Gelowitz et al. 1993; Wilson and Lefcort 1993; 

Chivers et al. 1996b; Chivers and Mirza 2001; Mirza and Chivers 2001a), and some 

organisms do not respond to predator cues when the predator has only been eating 

heterospecifics (Gelowitz et al. 1993; Stabell and Lwin 1997; Belden et al. 2000).  

Nevertheless, the role heterospecific alarm cues have in caddisfly antipredator behavior 

needs further investigation. 

Prey fitness is increased from responding to conspecific and heterospecific alarm 

cues by decreasing the probability of encountering the predator or increasing the chance 

of escape after detection (Mirza and Chivers 2001b).  Chemical alarm cues are abundant 

in aquatic ecosystems and many species of gastropods, insects, crustaceans, amphibians, 

and fishes possess analogous systems where antipredator behavior is elicited from injured 

conspecific chemical stimuli (reviewed by Chivers and Smith 1998).  Among freshwater 

invertebrates, the presence of such alarm systems has been well documented and includes 
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amphipods (genus Gammarus Fabricius, 1775; Williams and Moore 1985; Wisenden et 

al. 1999), daphnia (Daphnia magna Straus, 1820; Pijanowska 1997), crayfish (genus 

Orconectes Cope, 1872; Hazlett 1994), mosquito larvae (Culex pipiens L., 1758; Sih 

1986), mayfly larvae (order Ephemeroptera; Scrimgeour et al. 1994; Huryn and Chivers 

1999), and damselfly larvae (genus Enallagma Charpentier, 1840; Chivers et al. 1996b; 

Wisenden et al. 1997). 

 The survival of prey organisms is dependent upon accurate and reliable 

information about predation risk.  In aquatic environments, chemical cues can provide the 

information necessary for prey to respond to the threat of predation and increase their 

probability of survival.  Our study indicates that caddisflies utilize chemical cues for 

immediate predator recognition and antipredator behavior.  Moreover, the caddisfly H. 

occidentalis appears to possess and utilize chemical alarm cues expanding our knowledge 

of chemical alarm cues in aquatic taxa. 
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CHAPTER 3 

 

SURVIVAL AND GROWTH OF AQUATIC CADDISFLIES AFTER PREDATION  

ON TOXIC NEWT EGGS (TARICHA GRANULOSA)
2
 

The rough-skinned newt (Taricha granulosa (Skilton, 1849)) possesses a powerful 

neurotoxin tetrodotoxin in the skin that is secondarily deposited in the ova. Although 

assumed to serve an antipredator function in the eggs, empirical evidence of the toxin’s 

role in preventing egg predation is lacking. In this study, we characterized the aquatic 

macroinvertebrate community at a location sympatric with extremely toxic newts and 

estimated the abundance of the caddisflies. We tested aquatic macroinvertebrates 

sympatric with toxic newts for their capacity to consume the toxic eggs, and examined 

the propensity of egg predation and its effect on growth of the only known predator of 

newt eggs, caddisfly larvae. Limnephilid caddisfly larvae were the only invertebrate 

observed to consume substantial quantities of toxic newt eggs. Survival and growth of the 

caddisfly, Limnephilus flavastellus (Banks, 1918), continued when larvae consumed toxic 

eggs and did not differ from L. flavastellus that also had access to an alternative food 

source (detritus). Limnephilus flavastellus that had access to eggs + detritus consumed a 

similar number of eggs compared with those provided with eggs only. These results, 

combined with the abundance of caddisflies, suggest caddisflies are important predators 

of eggs of Taricha granulosa. 

                                                 
2
 Coathored by Brian G. Gall, Edmund D. Brodie, III., and Edmund D. Brodie, Jr. Reprinted with 

permission of NRC Research Press from the Canadian Journal of Zoology Vol. 89, pages 483-489, 2011. 
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INTRODUCTION 

Toxicity is a common antipredator strategy and empirical evidence indicates that 

toxic prey often escape predatory encounters uninjured, thus conferring a selective 

advantage to those individuals (Fisher 1930; Paradise and Stamp 1991; Williams et al. 

2003; see Chapter 4). Some toxic or distasteful species secondarily provide the same 

protection to their offspring by depositing the chemical defenses in the ova. These 

compounds protect the developing embryo until hatching, whereupon behavioral defenses 

can reduce the risk of predation or the juvenile can sequester its own toxin. 

 Although embryonic toxins may prevent predation by some predators, it is 

unlikely that any defense will confer complete protection (Orians and Janzen 1974). For 

example, Licht (1968, 1969) established that eggs of toads (genus Bufo Laurenti, 1768) 

are unpalatable to a variety of potential predators including leeches (genus 

Batrachobdella Viguier, 1879), larval Northwestern Salamanders (Ambystoma gracile 

(Baird, 1859)), and fishes (black bullhead, Ameiurus melas (Rafinesque, 1820); longear 

sunfish, Lepomis megalotis (Rafinesque, 1820); green sunfish, Lepomis cyanellus 

Rafinesque, 1819; threespine stickleback, Gasterosteus aculeatus L., 1758; cutthroat 

trout, Oncorhynchus clarkia (Richardson, 1836)). However, the Common Garter Snake 

(Thamnophis sirtalis (L., 1758)) frequently eats adult bufonids and is not deterred from 

consuming toad eggs (Licht 1968). Eggs of the saddled toby (Canthigaster valentine 

(Bleeker, 1853)) are unpalatable to two species of sympatric reef fish, but are consumed 

by a closely related species (Gladstone 1987). Nonetheless, egg toxicity clearly limits the 
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scope of predators that can consume the eggs and likely confers a fitness advantage to 

those organisms that supply their embryos with this defense. 

 One of the most toxic vertebrates, newts of the genus Taricha Gray, 1850, deposit 

large quantities of the neurotoxin tetrodotoxin (TTX) in the ova (Twitty 1937; Mosher et 

al. 1964; Wakely et al. 1966; Hanifin et al. 2003). Although the toxin is also located in 

the skin and serves an antipredator function in adult newts (Brodie 1968; Brodie et al. 

1974), it is unknown if the toxin confers similar protection to the eggs. Tetrodotoxin is an 

extremely powerful toxin, blocking the pore of voltage-gated sodium channels thereby 

stopping the propagation of action potentials and rapidly leading to asphyxiation and 

death (Kao 1966; Narahashi et al. 1967). Tetrodotoxin quantities range between 672 to 

2767 ng in a single egg (Hanifin et al. 2003), enough to kill up to 14 mice (20 g each) in 

10 minutes. Although it is unlikely many predators consume these eggs, Lehman (2006) 

observed larval caddisflies (order: Trichoptera) consuming newt eggs at some localities. 

Furthermore, caddisflies are known to consume the eggs of other amphibians (Murphy 

1961; Dalrymple 1970; Richter 2000; Romano et al. 2008). If caddisflies exhibit the same 

susceptibility to TTX as mice, a single egg contains enough TTX to kill 500 to 3700 

caddisflies.  

We evaluated the possible interactions between newt eggs and potential predators 

by first characterizing the macroinvertebrate community at one of our study sites and 

providing these invertebrates with toxic eggs in the laboratory. Because caddisflies have 

been observed to consume newt eggs we specifically examined if consumption of newt 

eggs prevents larval caddisfly growth and development. Finally, we estimated the 

abundance of caddisflies to determine their potential impact on the newt population. 
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MATERIALS AND METHODS 

Study Area and Macroinvertebrate Sampling. Invertebrate sampling took place at 

a series of eight man-made ponds (Soap Creek ponds) located in the Central Willamette 

Valley, near Corvallis, Oregon, USA. Located on the eastern edge of the Coast Range 

Mountains, the surrounding vegetation consists primarily of coniferous forest. The ponds 

are arranged in two rows of four, with the upper row 4 m higher than the lower ponds. 

Each pond is 22.86 m × 91.44 m square and gently slopes to a depth of 3-4 m at the 

easternmost edge. The ponds within a row are separated by 2 m wide berms. 

For the present study, we haphazardly selected four ponds to serve as sampling 

sites. Invertebrate sampling occurred on 11 March 2010. We used two sampling 

techniques to document the diversity of the macroinvertebrate community and the 

abundance of caddisflies. Caddisfly abundance was estimated using a 19 L bucket (0.285 

m diameter) with the bottom cut out. The bottomless bucket was rapidly pushed into the 

substrate and mesh strainers (aperture = 1 mm
2
) were used to move all the contents into 

shallow trays. The contents of the trays were sorted and all macroinvertebrates were 

preserved in formalin-acetic acid-alcohol (FAA). Five within-pond samples were 

collected from each pond by haphazardly selecting a location at a depth up to 37 cm and 

proceeding at 2 m intervals across the pond from this location. An estimate of caddisfly 

abundance was calculated by dividing the area of the pond by the area of the bucket then 

multiplying by the mean number of caddisflies collected in the five samples collected per 

pond. Although this technique makes the assumption of even distribution across the pond, 

it gives a rough estimate of density and allows us to evaluate the potential influence of 
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caddisflies on the newt populations. The process of moving to the bucket sampling 

location may have slightly disturbed the water around the sampling site, resulting in 

mobile invertebrates being underrepresented in the samples.  Therefore, we also sampled 

macroinvertebrates by dip-netting each pond for 1 h to further assess the diversity of the 

macroinvertebrate community. These samples were visually examined and subsamples 

were transferred to ice-chests and transported to Utah State University for identification 

and egg consumption experiments. 

Gravid female Rough-skinned Newts (Taricha granulosa (Skilton, 1849); 

henceforth newts) were collected by hand from Soap Creek ponds for the collection of 

eggs (see below) in March 2009 and 2010.  Newts were transported to Utah State 

University where they were housed in 5.7 L containers with 2 L of tap water filtered by 

reverse osmosis.  To initiate egg deposition and ensure eggs were of similar 

developmental stage, females were injected with 2 µl/g of luteinizing hormone releasing 

hormone [(de-Gly
10

, d-His(Bzl)
6
]-LH-RH ethylamide; Sigma #L2761).  Eggs were 

collected 24 h after the initiation of deposition and frozen (caddisfly growth experiment) 

or immediately given to potential predators (egg predation by aquatic invertebrates). 

Consumption of Newt Eggs by Aquatic Invertebrates. We tested 

macroinvertebrates from 5 different orders and 11 families collected from Soap Creek 

ponds for their propensity to consume recently deposited newt eggs (Table 3.1). The 

sample sizes of potential egg predators tested was unequal because of differences in 

availability. Invertebrates were housed individually in clear plastic cylinders (9 cm  

 



40 

Table 3.1. Macroinvertebrates collected at Soap Creek Ponds and tested for their 

propensity to consume toxic newt eggs of Rough-Skinned Newts. 

            

Class Order Family Species 

No. 

invertebrates 

offered eggs 

Eggs 

consumed 

Insecta Odonata Libellulidae  11 No 

Insecta Odonata Aeshnidae  1 No 

Insecta Odonata Coenagrionidae  6 No 

Insecta Hemiptera Belostomatidae  1 No 

Insecta Hemiptera Notonecta  2 No 

Insecta Hemiptera Nepidae  NA Not Tested 

Insecta Coleoptera Noteridae  3 No 

Insecta Coleoptera Dytiscidae  1 No 

Insecta Trichoptera Limnephilidae Limnephilus flavastellus 3 Yes 

Insecta Trichoptera Limnephilidae Limnephilus concolor 3 Yes 

Insecta Trichoptera Limnephilidae Limnephilus occidentalis 15 Yes 

Insecta Trichoptera Limnephilidae Grammotaulius betteni 2 Yes 

Gastropoda Lymnophila Physidae  4 No 

Gastropoda Lymnophila Lymnaeidae  2 No 

Gastropoda Lymnophila Planorbidae  4 Yes 

Note: NA, not available. “No” indicates that eggs were neither damaged nor consumed, whereas “yes” 

indicates that eggs were consumed. 

 

diameter × 4 cm tall) with a plastic cap affixed to the bottom. Small holes were punched 

in the sides to allow aerated water to pass into the cylinder. Invertebrates were randomly  

assigned to 1 of 10 cylinders placed inside a shallow tray filled with 3 L of filtered tap 

water and two aerators. Each tray was maintained in an environmental chamber at 6 °C. 

Recently deposited newt eggs were collected and combined from five female 

newts. Five of these eggs were placed in each cylinder and monitored daily for egg 

consumption for 16 days. The eggs were examined upon termination of the experiment 

for signs of predation. To ensure lack of egg consumption was not the result of aversion 

to feeding in the test containers, each invertebrate was provided with alternative prey, 

bloodworms or conditioned detritus (see below), at the conclusion of testing. All potential 

predators fed on at least one of the alternative diets within the confines of the test tanks. 



41 

Consumption of Newt Eggs by Caddisflies. Because caddisflies appeared to be the 

only major predator of Taricha eggs (see Results), we tested whether caddisflies would 

feed on eggs when a detritus food source was available. The case-making caddisflies 

(suborder Integripalpia) construct portable cases out of plant or mineral material that aid 

in respiration and defense (Wiggins and Currie 2008).  As a larva grows, additional 

material is added to the anterior end of the case and the change in case length over time 

can be used to estimate growth. 

Fifty-four Limnephilus flavastellus Banks, 1918 were measured to the nearest 

0.01 mm (case length) using digital calipers, individually placed in mesh bottom cups, 

and randomly assigned to one of three 37 L aerated aquaria with 15 L of filtered tap 

water at 12 ºC. Each L. flavastellus was then randomly assigned to one of three 

treatments: detritus only (n = 18), newt eggs only (n = 18), or eggs + detritus (n = 18) 

with an equal number of each treatment occurring within each aquarium. The median 

length of L. flavastellus in each treatment was not significantly different at the start of the 

experiment (Kruskal–Wallis one-way ANOVA; H[2] = 0.224, P = 0.894). Several thin 

strips of artificial silk leaves were added to each cup to provide L. flavastellus with media 

for case construction. 

Each L. flavastellus in the egg-only and egg + detritus treatment was given five 

newt eggs. Eggs were previously collected from 15 female newts, combined, and killed 

by freezing (-80 ºC) to ensure toxicity was similar throughout the experiment and 

between treatments; TTX concentration may decrease as development proceeds (Twitty 

1937).  Freezing is a common technique to preserve tissue samples for TTX analysis 

(Hanifin et al. 1999; Hanifin et al. 2003).  Although not tested during this experiment, 
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caddisflies also consume live eggs (B.G. Gall, unpublished data). Animals in the detritus 

and egg + detritus treatments were given three conditioned maple leaves. Conditioned 

maple leaves were prepared by collecting maple leaves (Acer grandidentatum Nutt.) 

shortly after abscission in October 2009 and maintained dry until further use.  In January 

2010, leaves were placed in aerated aquaria with filtered tap water and a small amount of 

pond detritus to facilitate the build-up of beneficial bacteria and fungi (henceforth 

conditioned detritus).  The number of eggs consumed by each L. flavastellus was 

recorded every 24-48 h, upon which the consumed eggs were replaced. All eggs and 

detritus were replaced every seven days. Detritus was replaced more frequently when 

large quantities were consumed. Because of the difficulties in quantifying small pieces of 

detritus and because our goal was to provide an excess of an alternative food source, we 

did not attempt to quantify the amount of detritus consumed. All caddisflies with access 

to detritus (including L. flavastellus in the egg + detritus treatment) consumed this 

resource; partially consumed leaves were frequently replaced. Eggs and detritus were 

never reused. Case length was measured at the completion of trials, providing an estimate 

of developmental rate (Anderson 1974). Trials were terminated after two weeks and 

caddisflies were not retested. 

Two L. flavastellus in the egg-only treatment pupated before the completion of 

trials and were excluded from the analyses. To determine whether an alternative food 

source affected egg consumption, we compared the number of eggs eaten between the 

egg-only and egg + detritus treatments with a Student’s t test. We compared the change in 

growth (increase in case length) between L. flavastellus in the three treatments by 

subtracting the initial length from the final length and comparing the change in length 
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between the treatments with a randomized complete block design with subsamples. Tank 

was used as the blocking factor and cups within tank as subsamples.  The Tukey-Kramer 

multiple comparisons method was used to identify differences between treatments.  

Because of the reduced power from blocking by tank and to account for the conservative 

nature and limited ability to detect small differences between means of Tukey-Kramer 

post hoc comparisons, we used an adjusted α value (determined a priori) for post hoc 

comparisons of 0.10 (Day and Quinn 1989).  Analysis was performed with GLIMMIX in 

SAS version 9.2 (SAS Institute Inc., Cary, North Carolina, USA) with the nobound 

option.  Finally, we examined the role that the size of L. flavastellus had on the number of 

eggs a larvae consumed by combining the egg-only and egg + detritus treatments and 

comparing the number of eggs consumed to initial length using linear regression. All data 

met assumptions for parametric statistics. 

 

RESULTS 

Macroinvertebrate Sampling. Invertebrates from 18 genera and 13 families were 

collected in samples from the three ponds (Table 3.1). No invertebrates were present in 

the bucket samples that were not found in the dip-net samples. A total of 494 

invertebrates were collected during bucket sampling from all four ponds. The most 

abundant invertebrate in the bucket samples were caddisflies, comprising 95.7% of the 

invertebrates collected. Four species of caddisfly were present, with Limnephilus 

flavastellus comprising the majority (Table 3.2). In total, as many as 774,000 caddisflies 

(Table 3.2) may populate each 2,090 m
2
 pond.  
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Table 3.2. Species and estimated population sizes of caddisflies (Trichoptera) sympatric 

with a population of toxic Rough-skinned Newts (Taricha granulosa).  

        

Species 

Total Mean number Estimated population 

collected per sample size per pond 

Limnephilus flavastellus 430 21.5 704484 

Limnephilus concolor 29 1.5 47512 

Limnephilus occidentalis 10 0.5 16383 

Grammotaulius betteni 4 0.2 6553 

Note: All species consumed living and freeze-killed newt eggs in the laboratory. 

 

Egg Predation by Macroinvertebrates. Caddisflies were the only invertebrate to 

consume newt eggs, except a single Planorbid snail, which consumed 1 egg (Table 3.1). 

Each caddisfly species tested consumed newt eggs (Table 3.1). 

Egg Predation by L. flavastellus. All L. flavastellus offered newt eggs consumed 

at least one egg over the 14 day trial. Limnephilus flavastellus in all three treatments 

increased in size during the trials; however change in growth was significantly different 

between the treatments (F[2,4] = 6.19, P = 0.059; Fig. 3–1). Consumption of eggs did not 

hinder growth but actually facilitated it; L. flavastellus in the egg-only and egg + detritus 

treatments grew more than L. flavastellus in the detritus-only treatment (egg only: t[4] = –

2.87, P = 0.095; egg + detritus: t[4] = –3.16, P = 0.072; Fig. 3–1). There was no 

significant difference in the growth between L. flavastellus provisioned with eggs only or 

eggs + detritus (t[4] = –0.14, P = 0.99).  In addition, L. flavastellus with access to an 

alternative food source (detritus) consumed a similar number of eggs (eggs consumed = 

14.72 ± 2.02 (mean ± SE)) compared with L. flavastellus that had access to eggs only 

(eggs consumed = 12.94 ± 2.12) (t[32] = –0.61, P = 0.55; Fig. 3–2). Larger L. flavastellus 

consumed more eggs than smaller L. flavastellus (F[1,32] = 17.94, R
2
 = 0.359, P < 0.001; 

Fig. 3–3). 
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Fig. 3–1. Growth (mm) of the caddisfly Limnephilus flavastellus observed in larvae fed 

detritus only, eggs of Rough-skinned Newts (Taricha granulosa) only, or eggs + detritus. 

Growth was measured as the change in case length. Different letters indicate significant 

differences (P ≤ 0.1) between treatments. Values are means ± SE. 
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Fig. 3–2 The caddisfly Limnephilus flavastellus with access to an alternative food source 

(detritus) consumed a similar number of eggs of Rough-skinned Newts (Taricha 

granulosa) (eggs consumed = 14.72 ± 2.02) as L. flavastellus that had access to eggs only 

(eggs consumed = 12.94 ± 2.12) (Student’s t test, t = –0.61, P = 0.55). Values are means 

± SE. 
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Fig. 3–3. Regression of the number of eggs of Rough-skinned Newts (Taricha granulosa) 

consumed by individual caddisfly Limnephilus flavastellus versus the initial length of L. 

flavastellus in the egg-only and egg + detritus treatments (treatments were combined 

because no significant difference in number of eggs consumed was detected). Larger L. 

flavastellus consumed more eggs over the course of the experiment than smaller L. 

flavastellus (F[1,32] = 17.94, R
2
 = 0.359, P < 0.001). Values are means ± SE. 
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DISCUSSION 

 

The presence of TTX in the eggs of newts has been postulated to serve as a 

defense against egg predators (Twitty 1966; Daly et al. 1987). The eggs from the 

population we sampled contain the highest levels of TTX in an egg known in the animal 

kingdom (1.53 µg TTX/egg; Hanifin et al. 2003), yet a single invertebrate, sympatric 

caddisflies (a single planorbid snail also consumed one egg), were able to consume these 

toxic eggs. Moreover, the presence of an alternative food resource (detritus) did not affect 

the number of eggs eaten by L. flavastellus, indicating egg predation may be common in 

an ecological context. Limnephilus flavastellus given a diet of eggs only or eggs + 

detritus grew equally well, and outgrew L. flavastellus that had access to detritus only. 

These data indicate that ingestion of TTX does not kill L. flavastellus predators, but these 

individuals continue to grow and develop (this study) and may eventually pupate and 

eclose as functional adults (B.G. Gall, personal observation). 

Ingestion of toxic foods is often assumed to have physiological costs that 

negatively affect growth of an organism (Freeland and Janzen 1974; Behmer et al. 2002). 

Detoxifying dangerous compounds requires energy and nutrients that could otherwise be 

used for growth or reproduction (Sorensen et al. 2005).  Consuming toxic eggs may entail 

a cost relative to some other animal based resource, yet consuming this immobile and 

plentiful resource is beneficial relative to a detritus-only diet. Limnephilus flavastellus 

continued to grow when provided with toxic eggs, suggesting individuals from this 

locality are resistant to TTX.  At present it is unknown what metabolic pathway is 

utilized to excrete, detoxify, or sequester TTX. 
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Although Limnephilid caddisflies are primarily detritivores, their food is limited 

in resources important for growth (e.g. lipid, protein, carbohydrate; Suberkropp et al. 

1976; Cummins and Klug 1979), and field and laboratory observations indicate that they 

are opportunistic scavengers and predators of animal matter (Brusven and Scoggan 1969; 

Gallepp 1974; Wissinger et al. 1996). Adult caddisflies reared exclusively on a diet of 

detritus are often smaller and have more wing abnormalities than field caught specimens 

(Anderson 1976), and experimental evidence indicates consumption of animal matter is 

important for normal growth and development. Anderson (1976) conducted laboratory 

experiments on the growth of caddisfly larvae fed diets of detritus and detritus 

supplemented with animal matter. He found that supplementing animal matter reduced 

developmental time and yielded 50% larger larvae compared to caddisflies fed detritus 

only. Majecki and Majecka (1996) demonstrated that growth of the larval caddisfly 

Oligotricha striata (L., 1758), was accelerated when they consume eggs of European 

Frogs (Rana temporaria L., 1758) compared with O. striata fed detritus only from their 

natural habitat. This increase in growth and decrease in developmental time was 

attributed to additional protein or lipid resources in the supplemented food, and 

alternative foods containing these compounds are likely important to caddisfly growth in 

natural environments (Anderson 1976; Cummins and Klug 1979). 

Both lipids and protein are major components of amphibian eggs (Duellman and 

Trueb 1994), and caddisfly larvae have been observed eating the eggs of several 

amphibian species (Murphy 1961; Dalrymple 1970; Rowe et al. 1994; Majecki and 

Majecka 1998; Richter 2000). At our study site, newt populations can reach local 

densities of 6,000 individuals per pond (Isaac and Bond 1963; Smith 1967), and a single 
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female may deposit 400 to 650 eggs (Hanifin et al. 2003). Although sex-ratios of T. 

granulosa from our study site are unknown, Janzen and Brodie (1989) documented a 

male:female sex ratio of 3.8:1 at a pond in Lane County, Oregon, with many more 

females present on land that had not yet entered the pond. At our study site, if 2,000 

females lay, on average, 500 eggs each, then one million eggs would be deposited in a 

single year, in a single pond. This massive reproductive output by newts is temporally 

limited, typically occurring from March through July (Nussbaum et al. 1983; B.G. Gall, 

personal observation). The final stage of rapid caddisfly growth (when larvae are large 

and consume the greatest number of eggs) coincides with newt oviposition, and ingestion 

of protein-rich foods during this phase is particularly important for proper development 

(Anderson 1976; Anderson and Cummins 1979; Cummins and Klug 1979). Moreover, 

caddisflies are very dense at this locality, possibly as many as three quarters of a million 

animals populating each pond. If each animal consumes, on average, 10 eggs, then as 

many as 30 times the reproductive output of the newt population could be consumed in a 

single season. Newt eggs are clearly not available to caddisflies in the same manner used 

in our experiments; newts attach their eggs to vegetation and may fold leaves around 

them (Miaud 1994). Nevertheless, caddisflies are likely major predators of newt eggs. 

Although functioning in the last stage of a predation event, toxicity has the 

potential to reduce the number of predators capable of consuming a particular prey 

species. However, antipredator defenses are unlikely to deter all potential predators and 

even extremely toxic Taricha eggs are vulnerable to predation. The abundance of 

caddisflies, apparent importance of protein based-food resources on growth, and the 
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continued growth and development after consuming tetrodotoxin indicate that caddisflies 

are major predators on the toxic egg stage of T. granulosa. 

 

ACKNOWLEDGEMENTS 

We are grateful to Norman Anderson for insightful discussions on caddisfly 

collection, husbandry, and natural history. We thank Joe Beatty and Oregon State 

University for permission and access to Soap Creek. Thanks go to Ryan Davis and David 

Ruiter for help preserving and identifying caddisfly specimens. Ted Evans provided 

valuable advice on experimental design. Newts were collected under Oregon Department 

of Fish and Wildlife permit 045-09 and 004-10. This research was conducted under Utah 

State University’s IACUC animal use protocol No. 1008R and was supported by the Utah 

State University Biology Department. 

 

REFERENCES 

Anderson, N.H. 1974. Observations on the biology and laboratory rearing of 

Pseudostenophylax edwardsi (Trichoptera: Limnephilidae). Can. J. Zool. 52:7-13. 

Anderson, N.H. 1976. Carnivory by an aquatic detritivore, Clistoronia magnifica 

(Trichoptera: Limnephilidae). Ecology, 57:1081-1085. 

Anderson, N.H., and Cummins, K.W. 1979. Influences of diet on the life histories of 

aquatic insects. J. Fish. Res. Board Can. 36:335-342. 

Behmer, S.T., Simpson, S.J., and Raubenheimer, D. 2002. Herbivore foraging in 

chemicallly heterogeneous environments: nutrients and secondary metabolites. 

Ecology, 83:2489-2501. 



52 

Brodie, E.D., Jr. 1968. Investigations on the skin toxin of the adult rough-skinned newt, 

Taricha granulosa. Copeia, 1968:307-313. 

Brodie, E.D., Jr., Hensel, J.L., and Johnson, J.A. 1974. Toxicity of the urodele 

amphibians Taricha, Notophthalmus, Cynops and Paramesotriton 

(Salamandridae). Copeia, 1974:506-511. 

Brusven, M.A., and Scoggan, A.C. 1969. Sarcophagous habits of Trichoptera larvae on 

dead fish. Entomol. News, 80:103-105. 

Cummins, K.W., and Klug, M.J. 1979. Feeding ecology of stream invertebrates. Annu. 

Rev. Ecol. Syst. 10:147-172. 

Dalrymple, G.H. 1970. Caddis fly larvae feeding upon eggs of Ambystoma t. tigrinum. 

Herpetologica, 26:128-129. 

Daly, J.W., Myers, C.W., and Whittaker, N. 1987. Further classification of skin alkaloids 

from neotropical poison frogs (Dendrobatidae), with a general survey of 

toxic/noxious substances in the amphibia. Toxicon, 25:1023-1095. 

Day, R.W., and Quinn, G.P. 1989. Comparisons of treatments after an analysis of 

variance in ecology. Ecol. Monogr. 59:433-463. 

Duellman, W.E., and Trueb, L. 1994. Biology of amphibians. The Johns Hopkins 

University Press. Baltimore, Md. 

Fisher, R.A. 1930. The genetical theory of natural selection. Oxford University Press. 

Oxford. 

Freeland, W.J., and Janzen, D.H. 1974. Strategies in herbivory by mammals: The role of 

plant secondary compounds. Am. Nat. 108:269-289. 



53 

Gallepp, G.W. 1974. Behavioral ecology of Brachycentrus occidentalis Banks during the 

pupation period. Ecology, 55:1283-1294. 

Gladstone, W. 1987. The eggs and larvae of the sharpnose pufferfish Canthigaster 

valentini (Pisces: Tetraodontidae) are unpalatable to other reef fishes. Copeia, 

1987:227-230. 

Hanifin, C.T., Brodie, E.D., III., and Brodie, E.D., Jr. 2003. Tetrodotoxin levels in eggs 

of the rough-skin newt, Taricha granulosa, are correlated with female toxicity. J. 

Chem. Ecol. 29:1729-1739. 

Hanifin, C. T., M. Yotsu-Yamashita, T. Yasumoto, E. D. Brodie, III., and E. D. Brodie, 

Jr. 1999. Toxicity of dangerous prey: variation of tetrodotoxin levels within and 

among populations of the newt Taricha granulosa. J. Chem. Ecol. 25:2161-2175. 

Isaac, G.W., and Bond, C.E. 1963. Standing crops of fish in Oregon farm ponds. Trans. 

Am. Fish. Soc. 92:25-29. 

Janzen, F.J., and Brodie, E.D., III. 1989. Tall tails and sexy males: Sexual behavior of 

rough-skinned newts (Taricha granulosa) in a natural breeding pond. Copeia, 

1989:1068-1071. 

Kao, C.Y., 1966. Tetrodotoxin, saxitoxin, and their significance in the study of excitation 

phenomena. Pharmacological Review 18:997-1049. 

Lehman, E.M. 2006. Egg toxicity and egg predation in Rough-skinned Newts, Taricha 

granulosa. Ph.D. thesis, Department of Biology, Indiana University, 

Bloomington. 

Licht, L.E. 1968. Unpalatability and toxicity of toad eggs. Herpetologica, 24:93-98. 

Licht, L.E. 1969. Palatability of Rana and Hyla Eggs. Am. Midl. Nat. 82:296-298. 



54 

Majecki, J., and Majecka, K. 1996. Predation by Oligotricha striata caddis larvae on 

amphibian eggs: effects of a high quality food on growth rate. Neth. J. Aquat. 

Ecol. 30:21-25. 

Majecki, J., and Majecka, K. 1998. Predation of Oligotricha striata (Trichoptera, 

Phryganeidae) larvae on amphibian eggs. Amphibia-Reptilia, 19:230-233. 

Miaud, C. 1994. Role of wrapping behavior on egg survival in three species of Triturus 

(Amphibia: Urodela). Copeia, 1994:535-537. 

Mosher, H.S., Fuhrman, F.A., Buchwald, H.D., and Fischer, H.G. 1964. Tarichatoxin-

tetrodotoxin: a potent neurotoxin. Science, 144:1100-1110. 

Murphy, T.D. 1961. Predation on eggs of the salamander, Ambystoma maculatum, by 

caddisfly larvae. Copeia, 1961:495-496. 

Narahashi, T., Moore, J.W., and Poston, R.N. 1967. Tetrodotoxin derivatives: Chemical 

structure and blockage of nerve membrane conductance. Science, 156:976-979. 

Nussbaum, R.A., Brodie, E.D., Jr., and Storm, R.M. 1983. Amphibians and reptiles of the 

Pacific Northwest. University of Idaho Press, Moscow. 

Orians, G.H., and Janzen, D.H. 1974. Why are embryos so tasty? Am. Nat. 108:581-592. 

Paradise, C.J., and Stamp, N.E. 1991. Prey recognition time of praying mantids 

(Dictyoptera: Mantidae) and consequent survivorship of unpalatable prey 

(Hemiptera: Lygaeidae). J. Insect Behav. 4:265-273. 

Richter, S.C. 2000. Larval caddisfly predation on the eggs and embryos of Rana capito 

and Rana sphenocephala. J. Herpetol. 34:590-593. 



55 

Romano, A., Spilinga, C., Montioni, F., Fiacchini, D., and Ragni, B. 2008. Egg predators 

of an endemic Italian salamander, Salamandrina perspicillata (Savi, 1821). Acta 

Herpetologica, 3:71-75. 

Rowe, C.L., Sadinski, W.J., and Dunson, W.A. 1994. Predation on larval and embryonic 

amphibians by acid-tolerant caddisfly larvae (Ptilostomis postica). J. Herpetol. 

28:357-364. 

Smith, J.M. 1967. The respitory ecology of the rough-skinned newt Taricha granulosa 

(Skilton). Ph.D. thesis, Department of Zoology, Oregon State University, 

Corvallis. 

Sorensen, J.S., McLister, J.D., and Dearing, M.D. 2005. Plant secondary metabolites 

comprise the energy budgets of specialist and generalist mammalian herbivores. 

Ecology, 86:125-139. 

Suberkropp, K., Godshalk, G.L., and Klug, M.J. 1976. Changes in the chemical 

composition of leaves during processing in a woodland stream. Ecology, 57:720-

727. 

Twitty, V.C. 1937. Experiments on the phenomenon of paralysis produced by a toxin 

occuring in Triturus embryos. J. Exp. Zool. 76:67-104. 

Twitty, V.C. 1966. Of scientists and salamanders. Freeman, San Francisco. 

Wakely, J.F., Fuhrman, G.J., Fuhrman, F.A., Fischer, H.G., and Mosher, H.S. 1966. The 

occurrence of tetrodotoxin (tarichatoxin) in amphibia and the distribution of the 

toxin in the organs of newts (Taricha). Toxicon, 3:195-203. 



56 

Wiggins, G.B., and Currie, D.C. 2008. Trichoptera families In An introduction to the 

aquatic insects of North America. Edited by R.W. Merritt, K.W. Cummings, and 

M.B. Berg. Kendall/Hunt, Dubuque, Iowa. 

Williams, B.L., Brodie, E.D., Jr., and Brodie, E.D., III. 2003. Coevolution of deadly 

toxins and predator resistance: Self-assessment of resistance by garter snakes 

leads to behavioral rejection of toxic newt prey. Herpetologica, 59:155-163. 

Wissinger, S.A., Sparks, G.B., Rouse, G.L., Brown, W.S., and Steltzer, H. 1996. 

Intraguild predation and cannibalism among larvae of detritivorous caddisflies in 

subalpine wetlands. Ecology, 77:2421-2430. 

  



57 

CHAPTER 4 

TETRODOTOXIN LEVELS IN LARVAL AND METAMORPHOSED NEWTS 

(TARICHA GRANULOSA) AND PALATABILITY TO PREDATORY DRAGONFLIES
3
 

 

Abstract 

 Some populations of the newt Taricha granulosa possess extremely high 

concentrations of the neurotoxin tetrodotoxin (TTX). Tetrodotoxin is present in adult 

newts and their eggs, but has been assumed to be absent from the larval stage. We tested 

larval and metamorphosed juveniles for the presence of TTX and evaluated the 

palatability of these developmental stages to predatory dragonfly nymphs. All 

developmental stages retained substantial quantities of TTX and almost all individuals 

were unpalatable to dragonfly nymphs. Tetrodotoxin quantity varied greatly among 

individuals. When adjusted for mass, TTX concentrations declined steadily through 

metamorphosis. Several juveniles were palatable to dragonflies and these individuals had 

significantly lower TTX levels than unpalatable juveniles. These results suggest that 

despite previous assumptions, substantial quantities of TTX, originally deposited in the 

embryo, are retained by the developing larvae and metamorphosed juveniles and this 

quantity is enough to make them unpalatable to some potential predators. 

  

                                                 
3
 Reprinted from Toxicon, 57, Brian G. Gall, Amber N. Stokes, Susannah S. French, Elizabeth A. 

Schlepphorst, Edmund D. Brodie, III., and Edmund D. Brodie, Jr., Tetrodotoxin levels in larval and 

metamorphosed newts (Taricha granulosa) and palatability to predatory dragonflies, 978-983, Copyright 

(2011), with permission from Elsevier. 
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1. Introduction 

The neurotoxin tetrodotoxin (TTX) is found in an enormous range of taxa 

including marine bacteria, ribbon worms, flatworms, mollusks, and puffer fishes as well 

as several species of terrestrial amphibians (reviewed by Hanifin, 2010; Miyazawa and 

Noguchi, 2001; Williams, 2010). Tetrodotoxin is an extremely powerful toxin, binding to 

sodium channels in nerve and skeletal muscle thereby blocking the propagation of action 

potentials resulting in asphyxiation and death (Kao, 1966; Narahashi et al., 1967). The 

ecological function of TTX is likely diverse, and TTX may function in both intraspecific 

(Matsumura, 1995; Zimmer et al., 2006) and interspecific (Hwang et al., 2004; Ito et al., 

2006) communication, prey immobilization and capture (Ritson-Williams et al., 2006), or 

as an antipredator mechanism (Brodie, 1968; Williams et al., 2010). 

The role of TTX in deterring predation has been well documented in adult rough-

skinned newts (Taricha granulosa). Newts may contain extremely high concentrations of 

TTX in the skin (Hanifin et al., 1999), and cutaneous extracts are lethal to almost all 

potential predators (Brodie, 1968). Moreover, newts with higher toxicity are more likely 

to survive encounters with potential predators, thus conferring a fitness advantage to 

toxicity (Williams et al., 2010). 

The presence of TTX and its role in other life-history stages including eggs, 

larvae, and metamorphosed juveniles is less clear. Substantial quantities of TTX are 

present in the ovaries and ova of adult females, as well as recently deposited eggs 

(Hanifin et al., 2003; Wakely et al., 1966). Maternal toxicity is highly correlated with egg 

toxicity and there is little variation in toxicity within a clutch (Hanifin et al., 2003). Due 

to their sedentary nature, embryos are vulnerable to predation (Orians and Janzen, 1974), 
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and the TTX present in newt eggs may limit the scope of predators capable of consuming 

them (Daly et al., 1987; Twitty, 1966; see Chapter 3). Twitty and Johnson (1934) and 

Twitty (1937) conducted the only experiments investigating the toxicity of late stage 

embryos and larvae. When Taricha torosa embryos were grafted to Ambystoma tigrinum 

the host became paralyzed. The paralysis persisted until the yolk was absorbed (shortly 

after hatching), whereupon mobility was regained. Extracts from macerated embryos 

(developmental stages: neurula to active swimming) were also injected into larval 

Ambystoma yielding similar results. Compared to embryonic extract, the length of 

paralysis was reduced when Ambystoma was injected with extract from larvae that had 

recently started feeding, and injection of extract from developmentally advanced larvae 

yielded no locomotor impairment. 

These experiments led to the conclusion that the toxin is primarily located in the 

yolk, and prevailing views assume that newt larvae retain no toxin. Nevertheless, specific 

toxicity levels of larvae and juveniles have not been measured. Moreover, these 

developmental stages have not been presented to potential predators to determine whether 

toxicity (if present) functions to deter predation. We reared Taricha from egg deposition 

to metamorphosis in the laboratory and tested the palatability of four developmental 

stages to predatory dragonflies (Anax junius). We also screened each developmental stage 

for the presence of TTX using a Competitive Inhibition Enzymatic Immunoassay 

(CIEIA). 
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2. Material and Methods 

2.1 Animal Collection 

Twelve gravid female newts were collected by hand from a series of manmade 

ponds near Corvallis OR in March 2010. Newts were transported to Utah State University 

where they were housed in 5.7-L containers with 2 L tap water filtered by reverse 

osmosis (henceforth: filtered water) in an environmental chamber at 6 °C. Females were 

transferred to a separate environmental chamber at 17 °C and injected with 2 µl/g LHRH 

(de-Gly10, [d-His(Bzl)6]-Luteinizing Hormone Releasing Hormone Ethylamide; Sigma 

#12761) to stimulate egg deposition. Some species of Taricha (e.g. Taricha torosa) 

attach clusters of eggs to stones or vegetation, however, T. granulosa deposit eggs singly 

on aquatic vegetation over several weeks in nature (Petranka, 1998). Eggs were collected 

72 h after the initiation of deposition and maintained in 9 cm diameter plastic dishes with 

50 ml filtered water until hatching. Upon hatching, larvae were transferred to 5.7 L 

plastic containers with 2 L filtered water. Larvae were maintained in these containers 

without food until the yolk was completely absorbed (3-5 days). Larvae were then fed 

Daphnia pulex ad libitum for one month. After this period, clutches were transferred to 

38-L aquaria filled with 35 L of pond water, detritus, and aquatic vegetation 

(Myriophyllum spicatum); this mixture contained abundant quantities of Daphnia and 

other microorganisms. The tank mixture was supplemented with blackworms 

(Order: Lumbriculida; Lumbriculus variegatus) weekly. Blackworms were obtained from 

a commercial supplier (Aquatic Foods, Fresno CA). Immediately prior to testing 15 week 

old larvae (see below), the tanks were drained and the larvae were transferred to 5.7 L 

containers with 2 L filtered water to monitor development. Larvae were fed blackworms 
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ad libitum until the initiation of metamorphosis (see below), whereupon they were 

transferred to a 1.2 L container filled with damp sphagnum moss and fed fruit flies 

(Drosophila melanogaster) until testing. 

Dragonfly nymphs (Anax junius) are major predators of anuran and caudate larvae 

(Buskirk, 1988; Storfer and White, 2004; Yurewicz, 2004). We used dragonflies from a 

population (near Preston ID) that does not co-occur with newts to ensure predators had no 

prior experience with newt larvae; sympatric dragonfly nymphs may learn to avoid newt 

larvae if they are unpalatable. Nymphs were maintained individually in 275 ml glass 

bowls with 200 ml filtered water and a small stone (perch site) in an environmental 

chamber at 17 °C. Dragonflies were fed blackworms ad libitum. 

 

2.2 Testing 

 We tested the palatability of larvae (three age classes) and recently 

metamorphosed juvenile T. granulosa to predatory dragonfly nymphs (A. junius). (1) 

First stage larvae (hatchlings: 0 weeks old) hatched two days prior to testing at 

developmental stage 39-41 (Harrison, 1969) and were tested on 3 June 2010. (2) Second 

stage larvae (4 weeks old) hatched on 27 to 30 April 2010 and were tested at 

developmental stage 46 (Harrison, 1969) on 27 May 2010. (3) Third stage larvae had 

fully formed front and back limbs, fully developed digits, and were tested 15 weeks after 

hatching (hatched: 27 to 30 April 2010; tested: 14 August 2010). (4) Metamorphosed 

juveniles were identified based on a reduction of the gills, change from smooth larval 

skin to granulated adult skin, and development of orange pigmentation on the venter. 

Because larvae initiated metamorphosis at different times, small groups of metamorphs 
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were tested in November and December 2010 (roughly 28 weeks old, hatched on 27 to 30 

April 2010). Juveniles were tested exactly 25 days after the initiation of metamorphosis. 

Half the individuals in each group were used to test palatability while the other half 

served as controls. 

 Each trial consisted of two 20 minute periods during which a nymph was 

provided either a single blackworm (control) or a newt. Each period was separated by 40 

minutes and the order of testing (control or newt) was randomly determined before the 

start of each trial. Twenty dragonfly nymphs were randomly chosen from a pool of 

individuals and fed three blackworms three days prior to testing to standardize hunger 

level between individual nymphs. The dragonfly holding containers were cleaned prior to 

each test period. Individual newts within a treatment (i.e. developmental stage) were 

collected from a minimum of five families. A prey (control or newt) was introduced to a 

bowl with a pipette and we recorded whether the prey was seized, rejected or consumed, 

and injured, uninjured, or dead. Trials were terminated after 20 minutes if the nymph did 

not consume the prey, or after a prey was seized and either rejected or consumed. Seizure 

usually occurred within the first minute. Dragonfly nymphs and newt larvae and 

metamorphosed juveniles were never retested. 

 To ensure injuries incurred during the predation event were not due to handling, 

we tested the survival of each newt compared to control larvae that were treated the same 

except no predator was present in the bowls. The tested and control larvae were 

transferred to glass bowls and the number of uninjured, injured, and dead larvae was 

recorded after 48 h. Each larva was removed from the bowl and nudged with the pipette. 

If the larva responded immediately by swimming in a general linear path it was classified 
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as uninjured. Injured larvae often had difficulty swimming or swam in convoluted 

patterns. We verified the health of metamorphs by placing them on their back and 

recording the time to right themselves (<5.0 s, classified as uninjured). Of 78 control 

larvae 76 were uninjured and two died; this variable did not affect the results and these 

data were removed from the analysis. At the termination of the experiment all unpalatable 

larvae were frozen at -80 ºC for TTX analysis. Larvae that were seized and partially 

consumed were removed from the predator after 1 hour and frozen at -80 °C to quantify 

TTX so the toxicity of palatable larvae could be compared to larvae that were rejected.  

 

2.3 TTX Analysis 

Tetrodotoxin was quantified using a Competitive Inhibition Enzymatic 

Immunoassay (CIEIA) as in Stokes et al. (submitted for publication). This assay is highly 

specific and works by binding anti-TTX monoclonal antibodies to TTX. In the absence of 

TTX or in low concentrations of TTX, the antibodies bind to the conjugate on the plate 

allowing secondary antibodies to also bind to the plate, resulting in a high absorbance 

reading. This value is then used to calculate the TTX concentration using the linear 

standard curve. The assay is able to detect TTX at a minimum concentration of 10 

ng/mL, and has a linear range of 10-500 ng/mL (Stokes et al., submitted for publication). 

Anti-TTX antibody concentrations for all plates were 0.391 μg/mL. All samples were 

diluted 1:2, 1:4, 1:8, or 1:16 depending on the total TTX concentration, to assure they 

were within range of the standard curve. Blanks (no antibody), negative controls 

(blackworms), and a standard curve (100, 75, 50, 25, 10 ng) were included on each plate. 
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All plates were read at 405 nm. The average coefficient of variation for each plate was 

between 4.55 and 6.55%.  

 

2.4 Statistical Analysis 

 We compared the total and mass corrected (ng TTX/mg body mass, log 

transformed to meet assumptions of normality) amounts of TTX (ng) in individuals from 

each developmental stage with ANOVAs followed by Holm-Sidak multiple comparisons. 

Finally, we compared the concentration of TTX in unpalatable and palatable 

metamorphosed juveniles with a t-test. 

We determined whether the frequency of palatable and unpalatable individuals 

was the same for the four developmental stages using a contingency table and a chi-

square test. The survival data were analyzed by combining the number of injured and 

dead larvae into a single category (wounded) and comparing the frequency of uninjured 

and wounded larvae in the four developmental stages with a contingency table and a chi-

square test. 

   

3. Results 

Tetrodotoxin levels in unpalatable larvae and juveniles ranged between 229 and 

2354 ng TTX per individual or 0.463–3344 ng TTX/mg body mass, with hatchlings 

exhibiting the highest concentration and toxicity generally decreasing with increasing 

developmental stage (Table 4.1). Palatable juveniles contained 296 ± 103 ng TTX or 0.33 

± 0.08 ng TTX/mg body mass (Table 4.1). There were significant differences in the total 

amount (ng) of TTX from the different developmental stages (df = 3, F = 5.02, P < 0.008, 

Fig. 4–1), with toxicity greatest in hatchlings, declining at 4 weeks old, and remaining  
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Table 4.1. The quantity (total and mass corrected) of TTX present in unpalatable larvae 

and juveniles from four developmental stages and palatable (palat) 28 week old juveniles. 

Conc.: concentration. Values are ± SE. 

 

Treatment N 
mass ± SE 

(mg) 

Total TTX 

(ng) 
Range 

TTX conc. 
Range 

(ng/mg) 

0 Week 6 5.9 ± 1.3 1076.3 ± 272.5 488-2354 700.02 ± 530.9 55.18-3344.36 

4 Week 6 77.6 ± 4.3 420.3 ± 57.5 259-580 5.67 ± 1.1 3.24-9.88 

15 Week 6 203.0 ± 41.1 427.5 ± 55.9 229-518 2.56 ± 0.6 1.14-5.17 

28 Week 9 681.8 ± 71.5 509.7 ± 68.5 316-929 0.78 ± 0.1 0.46-1.24 

28 Week (Palat) 4 836.5 ± 130.2 296.0 ± 103.4 90-583 0.33 ± 0.08 0.12-0.48 

 

relatively constant for the remainder of development. There was also a significant 

difference between developmental stages in the concentration of TTX (ng TTX/mg body 

mass) (df = 3, F = 65.1, P < 0.001, Fig. 4–1), whereby TTX concentration decreased after 

hatching and was the lowest after metamorphosis (Fig. 4–1). Palatable metamorphs had 

significantly lower TTX concentrations relative to unpalatable metamorphs (df = 11, t = 

2.83, P = 0.016, Fig. 4–2, Table 4.1). The negative control (blackworms) contained no 

TTX and was not different from the BSA control.  

The frequency of palatable and unpalatable individuals was not the same for the 

four developmental stages (df = 3, χ
2 

= 10.22, P < 0.025) whereby the palatability of 

newts generally increased with developmental stage (Table 4.2). Hatchling and four week 

old larvae were completely unpalatable, whereas one 15 week old larva was palatable and 

four juveniles were consumed (Table 4.2). 

The frequency of uninjured and wounded individuals was not the same for the 

four developmental stages (df = 3, χ
2 

= 16.89, P < 0.001). Younger larvae were more 

likely to be wounded after being seized by predatory dragonflies than older larvae (Table 

4.2). 
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Fig. 4–1. (top) Mean (± SE) total amount of TTX (ng) in newt larvae from four 

developmental stages. (bottom) Mass corrected (mean (± SE) ng TTX/mg body mass) 

TTX in newt larvae from four developmental stages. 0 W = Larvae that had recently 

hatched, 4 W = Four week old larvae, 15 W = fifteen week old larvae, 28 W = Larvae 

that had recently completed metamorphosis. Different letters indicate significant 

differences between treatments (P < 0.015). 
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Fig. 4–2. TTX concentration (ng TTX/mg body mass) present in unpalatable and 

palatable individual juvenile newts (approx. 28 Weeks post hatching; exactly 25 days 

post metamorphosis). Palatable juveniles had significantly lower TTX concentrations 

relative to unpalatable juveniles (df = 11, t = 2.83, P = 0.016). Circle: unpalatable 

juvenile newts. Triangle: palatable juvenile newts. Filled symbols indicate two 

overlapping values. 
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Table 4.2. Number and survival of newt larvae from four developmental stages presented 

to predatory dragonfly nymphs. H = Hatchling, M = Metamorph. 

 

Developmental Stage N Seized Rejected Uninjured Injured Dead Consumed 

0 Week 20 19 19 9 6 5 0 

4 Week 20 19 19 16 1 3 0 

15 Week 20 15 14 17 1 1 1 

28 Week 18 17 13 13 0 0 4 

 

4. Discussion 

 T. granulosa larvae and metamorphosed juveniles possess substantial quantities of 

TTX and most are unpalatable to predatory dragonfly nymphs. Female newts deposit 

large quantities of TTX in their eggs prior to deposition (Hanifin et al., 2003), and it was 

previously unknown how toxicity changed ontogenetically. Recently deposited eggs may 

contain as much as 2767 ng of TTX per egg (Hanifin et al., 2003), and early experiments 

suggested toxicity decreased with increasing development, ultimately resulting in 

nontoxic larvae (Twitty, 1937; Twitty and Johnson, 1934). Our study indicates toxicity 

does decline slightly during development (mean egg toxicity = 1528 ng (Hanifin et al., 

2003); mean hatchling toxicity = 1072 ng), however, larvae remain extremely toxic at 

hatching and all developmental stages, including metamorphosed juveniles, possess 

substantial quantities of TTX. The total toxicity of a single larva at hatching is 1076 ± 

272 ng of TTX. Total individual toxicity declines between hatching and four weeks old 

(420 ± 57 ng), and then remains stable through metamorphosis. These results contradict 

previous assumptions about the ontogenetic change of toxicity in Taricha and indicate 

some TTX is retained at least through metamorphosis. 
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When adjusted for body mass, TTX continues to decline through metamorphosis, 

despite no change in total toxicity. Due to their small size, hatchlings remain extremely 

toxic relative to eggs. However, by four weeks old, total toxicity decreased and body 

mass increased resulting in a 100 fold decrease in the amount of TTX (per mg body 

mass) relative to hatchlings.  

 Egg toxicity is correlated with maternal toxicity (Hanifin et al., 2003), and the 

TTX present in larval and metamorphosed juveniles is likely residual from the quantity 

initially deposited in the eggs. At our study site, TTX quantity is highly variable among 

individual adults (Hanifin et al., 1999, 2003). Because larvae for the current study were 

collected from at least five different clutches, it is likely initial clutch variability is 

driving some of the variation in larval and juvenile toxicity that we observed. This large 

amount of variation suggests the quantity of TTX in larval and juvenile newts may be 

correlated to the initial investment of TTX in the embryo. If female toxicity is correlated 

with all ontogenetic changes in toxicity, a selective advantage would likely be conferred 

to all age groups if derived from a highly toxic lineage. 

Taricha larvae are unpalatable to one of the most pervasive predators of 

amphibian larvae. For TTX to function as an antipredator mechanism, individuals with 

greater toxicity must be more likely to survive a predatory encounter. Williams et al. 

(2010) directly tested the role of TTX toxicity on the survival probability of encounters 

between adult newts and toxin resistant garter snakes. The authors found that newts that 

survived the encounters with predatory snakes had higher TTX concentrations than newts 

that were eaten, thereby directly testing the efficacy of TTX as an antipredator 

mechanism. In this study, unpalatable juveniles exhibited higher toxicity than palatable 
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individuals suggesting TTX toxicity also is directly related to probability of survival for 

larval newts.  

Tetrodotoxin is primarily located in the skin of adult newts (Mosher et al., 1964; 

Wakely et al., 1966; Brodie et al., 1974), and in the yolk of embryos (Twitty, 1937). The 

location of the toxin in larval newts is unknown; however, rejected larvae and juveniles 

were struck on all regions of the body (tail, limbs, head, torso). Dragonflies slowly 

consume pieces of their prey (rather than whole). The greater palatability of older larvae 

is likely due to a reduction in TTX per unit mass in larger individuals as well as greater 

sensitivity to TTX concentration rather than total quantity in predatory dragonflies. 

Although toxicity makes newt larvae unpalatable to potential predators, this 

antipredator mechanism functions after the prey has been seized and when the risk of 

injury is high (Endler, 1986; Brodie et al., 1991). Tetrodotoxin toxicity cannot confer a 

selective advantage if the prey still dies from injuries received during the attack. 

Dragonfly nymphs possess palpal lobes on the labium that terminate in movable grasping 

hooks. These hooks function to pierce and subjugate prey (Corbet, 1999). Larvae in early 

developmental stages (especially hatchlings) are vulnerable to injury or death from these 

predatory attacks. However, numerous individuals did survive these encounters, thus 

conferring a selective advantage to unpalatability. The predators used in this study had no 

prior experience with newts, requiring each individual to sample and reject the prey. 

Odonates are capable of learning (e.g. Chivers et al., 1996), and may be able to learn to 

avoid dangerous prey (O'Donnell, 1996). If dragonfly nymphs learn to avoid chemical or 

visual cues associated with newt larvae, the effective advantage of unpalatability 

increases, especially for those individuals that survive the initial encounter. 
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 Despite previous assumptions, Taricha larvae and most metamorphosed juveniles 

were unpalatable to predatory dragonfly nymphs. All age classes retained TTX, yet 

palatable juveniles possessed reduced levels of TTX relative to their unpalatable cohorts. 

A wide range of organisms possess tetrodotoxin, and understanding the ontogenetic 

changes in toxicity and the role TTX plays in the various life-history stages is paramount 

to determining the function of TTX for these organisms. 
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CHAPTER 5 

 

COMPLEX INTERACTIONS BETWEEN NEWTS AND CADDISFLIES AND 

IMPLICATIONS FOR THE EVOLUTIONARY ARMS-RACE BETWEEN SNAKES  

AND NEWTS 

Ecological interactions rarely involve only two species, yet this restriction is often 

inferred in coevolution. One of the most well documented coevolutionary interactions, 

the arms-race between toxic salamanders and toxin-resistant predatory snakes, has 

received little attention regarding additional predators. I document the interactions 

between a second class of predator, caddisfly larvae, and their prey, the toxic eggs of the 

rough-skinned newt. Caddisflies are major predators on newt eggs and possess behavioral 

adaptations (attraction to cues from gravid female newts and eggs) that likely facilitate 

the localization of prey.  Females however are not defenseless, and avoid predatory 

caddisflies by ovipositing high in the water column. Caddisflies generally, and especially 

large individuals, do not utilize this microhabitat, and field experiments confirmed that 

oviposition avoidance renders newt eggs relatively free from predation.  In addition, 

caddisfly larvae sequester some of the tetrodotoxin after consuming eggs and retain 

similar quantities for more than 135 days, including through metamorphosis to the 

winged-adult stage. Finally, caddisflies offered eggs with varying quantities of TTX 

consumed fewer eggs with higher levels of toxin, indicating caddisflies have the potential 

to indirectly drive the evolution of skin toxicity in adult newts. These results indicate that 

reciprocal selection between caddisflies and newts is possible, and the coevolutionary 
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arms-race between snakes and newts may involve an additional player, predatory 

caddisfly larvae. 
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INTRODUCTION 

 The degree of reciprocal selection between two coevolving species can be 

dependent on the ecological characteristics and community in which the interaction takes 

place (Thompson 1994, Thompson 2005). For example, both spatial and temporal 

variation in the pattern of coevolution can alter the dynamics between the coevolving 

species and lead to broad scale differences in the outcome of the interaction 

(Gomulkiewicz et al. 2000; Nuismer et al. 2003; Thompson and Fernandez 2006). The 

inclusion of additional species can also modify the interaction between a coevolving pair 

and have dramatic influences on the evolution of the phenotypes revolving around the 

interface. For example, interactions between a pollinating floral parasite, the moth Greya 

politella, and their host plant Lithophragma parviflorum are mutualistic in populations 

where the moth is the primary pollinator (Thompson and Cunningham 2002).  However, 

in other populations the presence of additional pollinators modifies the interaction 

resulting in commensalistic and, at the extreme, antagonistic interactions between the 

coevolving species (Thompson and Pellmyr 1992; Thompson and Fernandez 2006). 

Similarly, the presence of multiple species of pollinating yucca moth may destabilize the 

coadaptation between the moths and yucca plants leading to the evolution of “cheater” 

moths (Pellmyr et al. 1996), and the presence of cryptic species of wasp in fig-wasp 

interactions has the potential to alter the perceived one-to-one coevolutionary relationship 

between these species, potentially leading to a parasitic interaction (Molbo et al. 2003). 

These examples suggest that the nature of reciprocal selection between coevolving 

species is likely to be heavily influenced by other players in the system. 
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The arms-race analogy is often invoked to explain the presence of extreme 

phenotypes in predators and prey (Brodie and Brodie 1999). In this case, a predator 

causes selection on properties that make their prey less likely to be caught and consumed 

which leads to adaptations that increase foraging efficiency in the predator.  For example, 

gastropods in Lake Tanganyika in Africa appear to have evolved thick shells to counter 

the well-developed crushing chelae of predatory crabs (West et al. 1991), and similar 

patterns have been inferred from the fossil record of marine species (Vermeij 1977). 

Recently, Jansa and Voss (2011) have demonstrated that the adaptive evolution of 

venom-resistance in opossums (Didelphidae) that prey on pitvipers (Viperidae) may be 

the result of an evolutionary arms-race. Like interactions between plants and pollinators 

however, interactions between predators and prey are complex, and it is unlikely that 

only one predator and one prey influence the degree of reciprocal selection, and therefore 

the evolution of a trait, between two species. For example, Benkman et al. (2003) 

demonstrated that selection by crossbills has likely led to larger lodgepole pine cones, 

which has in turn led to changes in bill morphology. The interaction becomes more 

complex where cone borer moths (Eucosma recissoriana) occur. Predation by moths 

leads to smaller cones with relatively few seeds, thereby changing the coevoluationary 

dynamic between crossbills and trees (Siepielski and Benkman 2004).  Another seed 

predator, the red squirrel (Tamiasciurus hudsonicus), changes the selective environment 

further and competitively excludes crossbills, thereby terminating the coevolutionary 

process between these species (Benkman 1999). Despite this multispecies interaction, 

understanding the role of multiple predators on coevolution is difficult, and the role of 
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alternative predators in shaping coevolutionary arms-races has not been well 

documented. 

One of the most well documented evolutionary arms-races involves gartersnake 

predators (Thamnophis) and their newt prey (Taricha). Newts of the genus Taricha 

possess the powerful neurotoxin tetrodotoxin (TTX) that successfully repels almost all 

potential predators (Brodie 1968). Tetrodotoxin functions by blocking voltage-gated 

sodium channels in nerve and skeletal muscle thereby inhibiting the propagation of action 

potentials resulting in muscle failure, asphyxiation, and death (Kao 1966; Narahashi et al. 

1967). Although Taricha toxicity is geographically variable (Hanifin et al. 1999; Hanifin 

et al. 2008), newts in some populations may contain up to 16 mg of TTX, or enough to 

kill at least eight humans. The evolution of extreme toxicity in Taricha is believed to be 

the result of coevolution with several species of Thamnophiine garter snakes (Brodie and 

Brodie 1990; Brodie et al. 2002; Brodie et al. 2005; Williams et al. 2010). These snakes 

exhibit resistance to TTX due to changes in the amino acid sequence of the sodium 

channel protein NaV1.4 (Geffeney et al. 2002; Geffeney et al. 2005). Snakes vary in 

resistance, and some populations are able to consume newts with no negative 

physiological effects (Brodie et al. 2002). 

Although TTX is primarily located in the skin of adult newts, large quantities are 

also present in the ovaries, ova, and recently deposited eggs (Wakely et al. 1966; Hanifin 

et al. 2003). The eggs of T. granulosa are oviposited singly on aquatic vegetation over 

several weeks or months in early spring (Petranka 1998). In the eggs, TTX is believed to 

serve an antipredator function (Twitty 1966; Daly et al. 1987). Several types of aquatic 

invertebrates, including species of Odonata, Hemiptera, Coleoptera, Ephemeroptera, and 
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Gastropoda avoid consuming the toxic eggs (see Chapter 3). Nevertheless, toxicity is 

unlikely to successfully repel all potential predators. Caddisfly larvae (Trichoptera) have 

been found to consume large quantities of eggs and are major predators on this life-

history stage (see Chapter 3).  Moreover, these caddisflies appear to be at least partially 

resistant to the negative effects of ingesting tetrodotoxin (see Chapter 3). Understanding 

the evolution of toxicity in newts requires a broader analysis of the selective forces 

shaping this phenotype, and one of the most important questions of this interaction is 

what role other predators may be having on the arms-race. I explored the behavioral, 

ecological, and selective forces occurring between newts and caddisflies to determine the 

potential for reciprocal selection between these species and how this might impact the 

arms-race between snakes and newts. 

  

MATERIALS AND METHODS 

Several experiments were conducted to elucidate the interactions occurring 

between newts and predatory caddisflies. I addressed the following questions: (1) Do 

caddisflies respond behaviorally to newts? (2) Do newts possess strategies that limit 

predation on their eggs? (3) Is the TTX present in newt eggs sequestered by caddisflies? 

(4) What is the potential for indirect selection by caddisflies to lead to elevated toxicity in 

newts? 

 

ANIMAL COLLECTION 

Female newts (Taricha granulosa) in reproductive condition were collected in 

March 2009, 2010, and 2011 from Soap Creek ponds in the central Willamette Valley 
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(Benton County, Oregon). Newts were transported to Utah State University (USU) and 

housed individually in 5.7-l plastic containers with 3 l of filtered tap water. They were 

maintained at 6 ºC to prevent spontaneous egg deposition and fed blackworms 

(Lumbriculus variegatus) weekly. 

Caddisfly larvae (henceforth: caddisflies) were collected from the same ponds as 

Taricha. Caddisflies were housed in 37-l aerated aquaria with 20 l filtered tap water at 6 

ºC. Caddisflies were fed maple-leaf detritus (see Chapter 3 for description of detritus 

preparation). Mayfly larvae (Baetidae; henceforth: mayflies) were used as a nonpredatory 

control. Mayflies co-occur with Taricha at Soap Creek ponds, but at low densities. 

Mayflies were collected near Paradise, UT, and housed in a 37-l aerated aquarium with a 

small amount of detritus.  No caddisfly, mayfly, newt, or newt egg was reused for any 

experiment, except when serving as the source of chemical stimuli for behavioral trials 

(see below). 

 

1. DO CADDISFLIES RESPOND BEHAVIORALLY TO NEWTS? 

The behavioral responses of predators to their prey can influence the level of 

selection between two coevolving species, especially when the prey are dangerous 

(Brodie and Brodie 1999; Williams et al. 2003).  I examined the behavior of two species 

of caddisflies to stimuli that they may be exposed to before or during a predatory 

encounter with newt eggs.  Using two types of choice experiments, caddisflies were 

exposed to stimuli from (1) a blank control, detritus (food), male newts, and gravid and 

“spent” female newts, as well as (2) newt eggs and agar containing TTX. 
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The first set of trials exposed caddisflies to flowing chemical cues from a 

treatment or a blank control, depending on the position of the caddisfly within the test 

chamber. Limnephilus flavastellus was exposed to chemical stimuli from a control 

(double blank), detritus (food), recently deposited newt eggs, male newts in reproductive 

condition, gravid female newts, and “spent” female newts that had completed egg 

deposition (N = 10 per treatment). I also tested the response of L. concolor to a control 

(double blank), newt eggs, male newts, and gravid female newts in these same test tanks 

(N = 10 per treatment).  The test chamber was a gravitational flow-through system 

consisting of a series of vertically positioned containers modified from Petranka et al. 

(1987). Briefly, water from two 5.7-l containers housing the treatment stimulus drained 

via plastic tubing into two sides of a test container separated by a plastic partition that 

prevented the stimuli from mixing until they passed through mesh and into the 

experimental chamber (4 × 16.6 × 5 cm). A chemical gradient was produced preventing 

the stimuli from mixing while permitting caddisflies to move freely between the two 

chemical zones. 

I recorded the position (control or chemical stimulus) of the caddisfly in the 

experimental chamber every 30 sec and the number of times the caddisfly crossed the 

center line. Observations were made for 20 minutes. The number of observations spent 

on each side of the test tank (control or treatment) was tabulated for each caddisfly and 

divided by the total number of possible observations. The proportion of observations on 

the stimulus side of the test container was compared to a random distribution of 0.50 

using a one-sample t-test. The number of times that the center line was crossed in each 

treatment was compared using an ANOVA followed by Holm-Sidak comparisons. 
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A second set of trials were conducted in an arena containing static water with the 

stimulus source placed directly in the tank. These trials were used to verify caddisflies’ 

response to newt eggs and determine whether TTX was used as a cue to locate the eggs. 

Caddisflies were exposed to 30 newt eggs and a blank control (N = 26), or agar 

containing 46 µg TTX (equivalent to the average amount of TTX present in 30 newt 

eggs) and control agar (N = 20). The test chamber consisted of a 9 × 3 × 2.3 cm opaque 

plastic container with a line drawn across the middle to separate it into two halves. The 

caps from two 1.5 ml screw-cap microcentrifuge tubes were inverted and glued 1.5 cm 

from each end of the container. Sixty small holes were punched in each tube to permit the 

passage of chemical stimuli but prevent caddisflies from accessing the eggs or agar 

inside. 

Because of the presence of TTX in our experimental eggs I added TTX to agar to 

determine if caddisflies are specifically attracted to this toxin. The average amount of 

TTX/egg, excluding the jelly coat, from the Soap Creek newt population is 1.528 µg.  

The volume of an egg (excluding the jelly coat) from this population ranges from 4.92 µl 

to 8.67 µl (C. Hanifin, personal communication); I used a volume of 7 µl per egg to 

calculate the average volume and amount of TTX in 30 eggs. 

I made both control and TTX containing agar using Ionagar No. 2 (Consolidated 

Laboratories, Inc., Chicago Heights, Illinois, U.S.A.). Control agar was made by mixing 

1.5 g agar with 100 ml boiling distilled water and mixing the solution thoroughly. After 

the solution had partially cooled, it was poured into a Petri dish. The agar was then 

allowed to cool and solidify, at which time it was placed in a refrigerator. Because an 

extremely large quantity of TTX is present in the eggs of newts from this population, I 
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made substantially less TTX containing agar compared to the blank control. I mixed 2 mg 

TTX with 1 ml distilled water, then boiled 9 ml distilled water and added 0.15 g agar. 

After the boiled water-agar solution had cooled, but not solidified, I added the TTX 

solution, mixed the solution thoroughly, and poured it into a Petri dish. It was then 

allowed to solidify at which time it was refrigerated. 

A punch was used to remove a section of agar that was equal to the volume of 30 

newt eggs. The agar (control and TTX containing) was then inserted into separate 

centrifuge tubes and randomly assigned to one of the caps in the test chamber; separate 

punches were used for the two agars. The agar was refrigerated between punch removal. 

The test chamber was filled with 50 ml filtered tap water. One of the centrifuge 

tubes was filled with either 30 newt eggs or agar containing TTX and screwed to a 

randomly chosen cap. The second centrifuge tube was screwed to the other cap but left 

empty (if paired with newt eggs) or filled with control agar (if paired with agar 

containing TTX) to serve as a control. After ten minutes, a caddisfly was placed inside an 

acclimation cylinder (2.7 cm diameter) in the center of the test chamber and a three 

minute acclimation period was initiated. The cylinder was then removed and a 20-minute 

trial started. I recorded the position of the caddisfly every 30 seconds and the number of 

times the caddisfly crossed the center line. 

 

2. DO NEWTS POSSESS STRATEGIES THAT LIMIT PREDATION ON THEIR 

EGGS? 

 To determine if newts possess behavioral strategies that limit predation on their 

eggs, I recorded the oviposition behavior of female newts in response to caddisflies, 
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examined the microhabitat use of larval caddisflies, and conducted a field study to 

determine whether the behavioral strategy employed by female newts increased egg 

survival. 

 

Oviposition choice 

A choice test was used to determine the propensity of female newts to avoid 

ovipositing near predatory caddisflies (N = 8) and nonpredatory mayflies (N = 6). Female 

newts were tested in one half of a 74-l aquarium divided lengthwise by a piece of opaque 

plexi-glass that prevented water exchange between the two halves of the test tank (Fig. 5–

1A). A piece of screen (10 cm × 15 cm, 1.5 mm mesh) was glued 7 cm from each end. A 

5 × 10 cm piece of polyester fiber was anchored to a suction cup at each end of the 

middle compartment to serve as egg deposition sites. Females were able to move freely 

between fiber blocks and choose between oviposition sites.  

 Each test tank was filled with 6 l of filtered tap water. Ten caddisflies or mayflies 

were randomly assigned to one of the small compartments with the second compartment 

remaining empty creating a treatment side and a control side. The second test tank 

(within the same aquarium) was assigned the opposite treatment structure as the first 

tank. Invertebrates had been fed only detritus. 

 A female newt was injected with 2 µl/g LHRH and immediately placed in the test 

tank. Females were monitored every 2 hours from 0800 hrs to 2000 hrs for the beginning 

of egg deposition. Newts were removed from the test tank 24 hours after the beginning of  
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Figure 5–1. (A) Experimental chamber used to test ovipositing female newts responses 

to the presence of caddisflies and mayflies. Screen (dashed line) prevented the 

invertebrates from interacting with the female or consuming eggs. Clumps of polyester 

fiber (ovals) were provided for oviposition sites. (B) Vertical chamber used to test the 

responses of ovipositing female newts to the presence of caddisflies, mayflies or a blank 

control. Oviposition sites consisted of polyester clumps (dark circles) that were attached 

to willow (Salix amygdaloides) branches at 0, 9.5, 19.0, and 28.5 cm above the floor of 

the chamber. Invertebrates were maintained in two clear cylinders with screen tops on the 

bottom of the bucket. (C) Experimental stake used in field experiment testing newt egg 

survival at three different heights above the pond substrate. Eggs were attached to one of 

three turf squares (dark stippling) and separated by rectangular pieces of turf (light 

stippling). The stake was pushed into the pond such that the bottom of the lowest square 

rested on top of the substrate. 
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egg deposition, and the number of eggs on each piece of filter fiber was counted. To 

ensure that the number of eggs on each fiber block was based on 24 hours of oviposition, 

I subtracted the number of eggs on each piece of fiber at the start of the trial from the 

total number of eggs deposited after 24 hours. I made an a priori decision to remove 

females from the analysis if fewer than 50 eggs were deposited in the 24 hour test period 

because these females may not have completely entered oviposition. The number of eggs 

deposited on the control and treatment sides of the test tank were counted for each female 

and divided by the total number of eggs deposited. I compared the number of eggs 

deposited on the control and treatment sides of the test container for each treatment with 

a paired t-test. Assumptions for parametric statistics were met by these data. 

 

Oviposition behavior in vertical chamber 

I tested the responses of ovipositing females in a vertical test chamber to chemical 

stimuli from predatory caddisflies (N = 10), nonpredatory mayflies (N = 10), and a blank 

control (N = 10). Each test chamber consisted of a 19 l opaque bucket. Oviposition sites 

were provided at 0, 9.5, 19.0, and 28.5 cm along a vertical axis starting at the bottom of 

the bucket (Fig. 5–1B). Each oviposition site consisted of a 1g piece of polyester fiber 

glued to a willow (Salix amygdaloides) branch at the appropriate height. Two branches 

with attached oviposition sites were present in each bucket (Fig. 5–1B). A bucket was 

filled to a height of 32 cm with filtered tap water. 

 Caddisflies or mayflies were placed in two holding containers at the bottom of the 

test chamber (Fig. 5–1B). Holding containers consisted of 3 cm long pieces of clear 

plastic tubing (8.9 cm diameter) with a plastic cap on the bottom. Each container was 



89 

filled with eight conditioned maple leaves (Acer grandidentatum) and five of the 

appropriate invertebrates or no invertebrate (control). A piece of fiberglass window 

screen was fixed to the top of the container with an elastic band. Two of these containers 

of the appropriate treatment were placed in the bottom of each bucket.  A gravid female 

newt was randomly assigned to one of the three treatments, injected with 2µl/g LHRH, 

and placed in the bottom of the bucket. Each experimental chamber was assembled 

immediately prior to the start of each trial to prevent individual females from 

experiencing different gradients of chemical cues at the beginning of each trial. Trials 

were conducted inside an environmental chamber at 11ºC with a 12:12 light:dark regime. 

Females were monitored daily for the beginning of egg deposition. After approximately 

50 eggs had been deposited, the female was removed and the total number of eggs on 

each fiber block was counted. When trials were terminated (24–48 hours after the start of 

oviposition), all females had deposited more than 50 eggs. 

To compare egg deposition between treatments, I analyzed the proportion of eggs 

deposited at each height relative to the total number of eggs deposited. Data were 

analyzed with a generalized linear mixed model using number of eggs as the response 

and (log-transformed) total number of eggs deposited as an offset, with a negative 

binomial distribution and a log link. The design structure partitioned variance between 

and within females in a split-plot design, with female as the whole plot unit, a repeated 

measure (within a female) as the subplot unit, and treatment and height as the two fixed-

effects whole plot and subplot factors, respectively. Analyses were obtained using the 

GLIMMIX procedure in SAS 9.2 (SAS Institute Inc., Cary, NC, USA). I also compared 

the mean total number of eggs deposited in each treatment with an ANOVA. 
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Caddisfly distribution in relation to oviposition behavior 

I examined the vertical space use of L. flavastellus in aquatic vegetation. Three 

different species of plants were used; however, plant type had no effect on the results and 

will not be discussed further.  The test chamber consisted of a 3.8 l glass jar with 4.5 cm 

of course sand and 3.5 l of filtered tap water. Four lines were drawn around the jar every 

4.5 cm from the top of the sand, resulting in four zones of increasing height, as well as 

the ground zone (located on the substrate). Three plants of a single species were placed in 

the sand in a triangular array. Four conditioned maple leaves and five caddisflies were 

placed on the substrate. After a 20 min acclimation period, I recorded the position of each 

caddisfly within each zone [ground (0cm), 0–4.5 cm, 4.5–9 cm, 9–13.5 cm, 13.5–18 cm] 

every 20 minutes for 5 hours. Two replicates were conducted per plant species resulting 

in six experimental chambers. The total number of caddisfly observations at each height 

was summed for each experimental container. These data were analyzed by a two-way 

ANOVA with plant type and height as the two fixed factors. Data were square-root 

transformed to meet assumptions of normality. 

I also measured the vertical space use of individual caddisflies to determine what 

role size (mass, case length, and case width) had on the height obtained in aquatic 

vegetation (Egeria densa). The experimental chamber and test procedure were the same 

as previously described, except that a single caddisfly was placed in each jar. At the 

conclusion of testing, I recorded the length and diameter of the case as well as the mass 

of the caddisfly (without case). I calculated the mean height obtained by the caddisfly 

during each trial by assigning each zone a value based on the distance from the middle of 

that zone to the substrate and averaging all the observations from the five-hour trial. I 
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compared case length and diameter and caddisfly mass with the mean height obtained 

during the trials with linear regression. 

 

Field experiment on egg survival 

I tested the survival of newt eggs positioned at one of three heights (2, 13, or 25 

cm) above the substrate in a natural pond. Gravid female newts (N = 10) were collected 

from Soap Creek ponds and transported to Corvallis, OR. Each female was injected with 

20 µL LHRH. A female was placed in a 15-l tub with approximately 5 l of pond water. 

Small squares (3.8 x 3.8 cm) of artificial turf were glued to ceramic tiles and placed in the 

bottom of the tub for females to oviposit on. After females had deposited 5 eggs on a 

small square, the square was removed and placed in a separate tub until transportation to 

the field site. At 0900 hrs, all squares (collected either at 2000 hrs the previous day or 

0700 hrs that morning) were transported to the pond. The tub containing the experimental 

squares was placed in the pond to acclimate the eggs to the lower temperature. 

 One small square of turf containing five eggs was randomly assigned to the 

bottom, middle, or top of a 59 cm long wooden stake (Fig. 5–1C). Two small squares 

(without eggs) were stapled to the remaining empty positions, and two rectangular pieces 

of turf (3.8 x 17.5 cm) were stapled in the gaps, thus creating a continuous piece of turf 

with 5 eggs at the appropriate height (Fig. 5–1C). An imaginary grid (7 rows and 3 

columns; each square was approximately 3 × 3 m) was created across the pond and a 

stake was randomly assigned to one of the 21 squares. Stakes were pushed into the 

substrate (approximately 20 degrees from vertical) until the bottom of the lowest square 

rested on the substrate. Trials were initiated in three separate ponds (N = 5 or 6 
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stakes/treatment/pond). After 25 hours, the stakes were removed and the number of 

surviving eggs was recorded. 

I compared the number of surviving eggs on each stake among the three heights 

using a general linear model followed by REGWQ multiple comparisons in SAS v 9.1. 

Stake was treated as the experimental unit, with the number of surviving eggs summed 

for each stake. Height was treated as a fixed effect factor while pond was incorporated 

into the model as a random factor. These data were squared to meet assumptions of 

normality. 

 

3. IS THE TTX PRESENT IN NEWT EGGS SEQUESTERED BY CADDISFLIES? 

Caddisflies likely ingest a large amount of tetrodotoxin when consuming newt 

eggs. To determine if caddisflies sequester this toxin, I tested whether (1) caddisflies 

provisioned with eggs in the lab possess more TTX than control animals, (2) if wild-

caught caddisflies harbor the toxin and (3) how long TTX is retained when wild-caught 

caddisflies are reared in the lab. 

To determine whether caddisflies sequester tetrodotoxin, I tested the amount of 

toxin retained in their tissues 24 hours after consuming five eggs in the laboratory. A 

caddisfly was housed in a mesh-bottom cup (236 ml) placed inside a larger cup with 500 

ml of water. The mesh cup was elevated off the floor of the second cup ensuring that 

fecal material did not accumulate inside the test container. The cups were maintained in 

an environmental chamber at 16 C on a 12 hour light: 12 hour dark cycle. Each caddisfly 

was randomly assigned to either the control (N = 12) or egg-fed (N = 12) treatment. 

Caddisflies in the egg-fed treatment were given five eggs from one of two female newts 
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that had recently begun depositing eggs. I recorded the number of eggs consumed by 

each caddisfly daily. Twenty-four hours after consuming the fifth egg, a caddisfly was 

removed from the mesh cup and extracted from its case. The larva was weighed (0.01g) 

and frozen at -80 C for TTX analysis. At the same time, a control larva that had not been 

fed eggs was removed, weighed, and frozen. Tetrodotoxin was quantified using a 

competitive inhibition enzymatic immunoassay (CIEIA), as described in Chapter 4. The 

amount of TTX present in control and egg-fed caddisflies was compared with a t-test. 

Data were square root transformed to meet assumptions of normality. 

 To determine the length of time caddisflies retain TTX, I collected caddisflies 

from Soap Creek ponds after newts had begun breeding. Immediately after collection, 32 

individuals were removed from their case, weighed to the nearest 0.01g, and frozen on 

dry ice. A group of caddisflies was also transported to Utah State University and 

maintained in mesh cups under the same conditions as described above. Caddisflies were 

maintained on a diet of detritus and wheat grains (Triticum sp.) to facilitate growth and 

obtain winged-adults. Subsets of larvae were frozen 13-44 days after collection. Several 

larvae successfully pupated, and adult caddisflies were frozen between 81 and 142 days 

following collection. Four caddisfly larvae (Hesperophylax occidentalis) allopatric with 

newts (collected from Paradise, UT) were also tested for the presence of TTX. 

The relationship between body mass and TTX quantity was assessed using linear 

regression on the subset of caddisflies frozen immediately after collection. To determine 

whether caddisflies retain TTX over time, I compared the amount of TTX retained by 

caddisflies with the days post collection. 
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4. WHAT IS THE POTENTIAL FOR INDIRECT SELECTION BY 

CADDISFLIES TO LEAD TO ELEVATED TOXICITY IN NEWTS? 

Caddisflies were provided with newt eggs containing low (569 ng; N = 43), 

medium (676 ng; N = 13), or high (1108 ng; N = 29) levels of TTX to determine whether 

caddisflies can influence the selective regime on the newt population by consuming more 

eggs with less TTX. Three female newts were injected with 2µl/g LHRH and allowed to 

oviposit for 24 hrs. Five eggs from each female were frozen. The protocol for housing 

caddisflies (mesh-bottom cups) is the same as that described above.  Each caddisfly was 

provided with five eggs from one female; variation in TTX between eggs within a clutch 

(i.e. one female) is extremely low (Hanifin et al. 2003). The experimenter was blind to 

the toxicity of the females and eggs. After 24 hours the number of eggs that had been 

consumed was recorded for each caddisfly, and the cups were re-stocked with eggs from 

the appropriate female. Caddisflies were allowed to consume eggs over an additional 24 

hour period, whereupon the number of eggs consumed was recorded. At the conclusion 

of testing eggs from a single female were combined, macerated, and extracted for TTX 

analysis using CIEIA (see Chapter 4). 

 The sample size between treatments was highly variable because of the 

dependence on the number of eggs deposited by each female over 24 hrs.  The females in 

the high and low TTX treatments deposited substantially more eggs than the female in the 

medium TTX treatment.  The total number of eggs consumed over the 48 hr period was 

calculated for each caddisfly. The mean number of eggs consumed in the three treatments 

(low, medium, and high TTX) were compared with a one-way ANOVA followed by 

Holm-Sidak multiple comparisons. Statistical analysis was performed blind with respect 
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to egg and female toxicity. Data were square root transformed to meet assumptions of 

normality and homoscedasticity. 

 

RESULTS 

1. DO CADDISFLIES RESPOND BEHAVIORALLY TO NEWTS? 

Limnephilus flavastellus exposed to cues from gravid female newts and a blank 

control spent significantly more time on the side of the test container associated with the 

gravid female newts (t = 4.385, df = 9, P = 0.002; Fig. 5–2). However, several weeks 

after these females had deposited all of their eggs, caddisflies spent a similar portion of 

time on the control and stimulus sides of the test tank (t = 0.187, df = 8, P = 0.857; Fig. 

5–2). When exposed to control, detritus, recently deposited eggs, and male newts, 

caddisflies exhibited a random distribution within the test tank, spending similar amounts 

of time on both sides (all P > 0.09; Fig. 5-2). There was no significant difference between 

treatments in activity levels as measured by the number of lines crossed (H = 2.3, df = 5, 

P = 0.06). 

 When exposed to cues from a control, recently deposited newt eggs, male newts, 

and gravid female newts, L. concolor spent a similar amount of time on both sides of the 

test container (all P > 0.21). However, there was a significant difference between 

treatments in activity levels as measured by the number of lines crossed (df = 3, F = 

5.245, P = 0.004).  Limnephilus concolor was least active in response to cues from a 

control [mean lines crossed (LC) ± SE = 3.8 ± 1.2], male newts (mean LC = 1.9 ± 0.48), 

and newt eggs (mean LC = 4.6 ± 1.14), but crossed significantly more lines in response to  
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Figure 5–2. Do caddisflies respond behaviorally to newts? (Top) Proportion (Mean ± 

SE) of time caddisflies (Limnephilus flavastellus) spent on the control and treatment side 

of a test chamber during choice-trials. Dashed line indicates a random distribution. **P = 

0.002, all other P > 0.09. (Bottom) Mean (± SE) proportion of time caddisflies 

(Limnephilus concolor) spent on the control and treatment side of a test chamber during 

choice-trials. Dashed line indicates a random distribution. *P < 0.05, NS = 

nonsignificant. 
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cues from gravid female newts (mean LC = 8.4 ± 1.6) compared to control or male newt 

cues. 

 Limnephilus flavastellus exposed to newt eggs and a blank control in a stagnant-

water container spent significantly more time in the portion of the test chamber 

containing newt eggs (t = 2.73, df = 25, P = 0.011; Fig. 5–2). However, caddisflies were 

not specifically attracted to agar containing 46 µg of TTX (t = -0.261, df = 19, P = 0.80; 

Fig. 5–2). There was no significant difference in the number of lines crossed between 

caddisflies exposed to eggs or agar with TTX (t = 0.53, df = 44, P = 0.60). 

 

2. DO NEWTS POSSESS STRATEGIES THAT LIMIT PREDATION ON THEIR 

EGGS? 

Oviposition choice 

Ovipositing female newts responded strongly to caddisflies, depositing just 25 % 

of their eggs near the caddisflies. The proportion of eggs deposited on the control side of 

the test chamber (0.75) was significantly higher than the proportion of eggs deposited 

near caddisflies (0.25; t = 3.233, df = 7, P = 0.014; Fig. 5–3). However, egg deposition 

between the two sides of the test tank (Mayfly: 0.51; Control: 0.49) in response to 

nonpredatory mayflies did not differ from random (t = 0.096, df = 5, P = 0.927; Fig. 5–3). 

 

Oviposition behavior in vertical chamber 

Significant main effects were detected for both treatment (F[2,28] = 7.51, P = 

0.0024) and height (F[3,80] = 65.71, P < 0.0001). A significant interaction effect between 

treatment and height, however, was also identified (F[6,80] = 3.79, P = 0.0023, Fig. 5–3).  
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Figure 5–3. Do newts possess strategies that limit predation on their eggs? (Top) 

Mean (± SE) percentage of eggs deposited by female newts on oviposition sites either 

next to (open circles) or away from (closed circles) predatory caddisflies or nonpredatory 

mayflies. *P = 0.014; NS, P = 0.93. (Bottom) Mean (±SE) proportion of eggs deposited 

at four different heights (cm) by female newts exposed to predatory caddisflies (triangle), 

nonpredatory mayflies (square), or a blank control (circle). Newts decrease the number of 

eggs deposited near the bottom and deposit more eggs near the top of the water column 

when an egg predator (caddisfly larvae) is placed near the bottom of the test chamber. 
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When exposed to caddisflies, ovipositing females shifted deposition upward relative to 

females exposed to mayfly and control treatments (Fig. 5–3). Females exposed to 

caddisflies oviposited just 1.5% of all eggs on the bottom fiber block compared with 

5.6% and 14.0% in the control and mayfly treatments, respectively. This shift away from 

the bottom resulted in 87.7% of all eggs being deposited at the top when exposed to 

caddisflies compared with 61% in the nonpredator mayfly treatment and 76% in the 

control treatment. There was no significant difference between treatments in the mean 

total number of eggs deposited (Caddisfly: 81.2 ± 7.5; Mayfly = 77.5 ± 3.1; Control: 76.8 

± 3.7; F = 0.21, P = 0.81). 

 

Caddisfly distribution in relation to oviposition behavior 

There was a significant main effect of height on the distribution of caddisflies 

throughout the plants (F[4,29] = 54.93, P < 0.001, Fig. 5–4). Caddisflies primarily utilized 

the substrate and lowest sections of vegetation and few were observed in the upper 

sections of vegetation (Fig. 5–4). The type of plant that caddisflies were offered had no 

effect on the distribution of caddisflies during the trial (F[2,29] = 0.94, P = 0.412). There 

was no significant interaction between plant type and height (F[8,29] = 2.34, P = 0.074). 

When compared to egg deposition by newts, caddisflies generally did not utilize areas 

where newt eggs were likely to be deposited (Fig. 5–4). 

 Smaller caddisflies climbed higher in aquatic vegetation than large caddisflies, 

which remained on or close to the substrate (Fig. 5-5). There was a significant negative 

correlation between caddisfly mass (F[1,24] = 7.7, R
2
 = 0.24, P = 0.01, Fig. 5–5), case  
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Figure 5–4. Do newts possess strategies that limit predation on their eggs? (Top) The 

number of caddisflies observed at five heights in aquatic vegetation over a five-hour 

period compared with the proportion of eggs deposited at four different heights by female 

newts exposed to caddisflies during vertical oviposition trials. All trials were conducted 

in the lab. Elodea line drawing provided by the University of Florida, Center for Aquatic 

and Invasive Plants. (Bottom) Mean (± SE) proportion of eggs that survived over a 25 

hour period when placed at one of three different heights (cm) above the substrate in a 

natural pond. Different letters indicate significant differences between treatments (P < 

0.05). 
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Figure 5–5. The mean height obtained by larval caddisfly Limnephilus flavastellus in 

relation to (A) Larval mass (F[1,24] = 7.7, R2 = 0.24, P = 0.01), (B) case length (solid 

circles; F[1,24] = 11.4, R2 = 0.32, P = 0.003), and case diameter (hollow circles; F[1,24] = 

10.1, R2 = 0.30, P = 0.004). 
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length (F[1,24] = 11.4, R
2
 = 0.32, P = 0.003, Fig. 5–5), and case diameter (F[1,24] = 10.1, R

2
 

= 0.30, P = 0.004, Fig. 5–5) and the height obtained in vegetation. 

 

Field experiment on egg survival 

Caddisflies were observed on the experimental stakes and evidence of predation 

by caddisflies (torn egg jelly and consumed yolk) was identified on most stakes. The 

height of newt eggs in the pond had a significant effect on their survival (df = 2, F = 7.51, 

P = 0.002, Fig. 5-4), with eggs placed near the substrate suffering the greatest predation 

and survival increasing with increasing height (Fig. 5-4). Block (pond) had no effect on 

egg survival (df = 2, F = 1.44, P = 0.25). 

 

3. IS THE TTX PRESENT IN NEWT EGGS SEQUESTERED BY CADDISFLIES? 

Caddisflies that consumed five newt eggs in the laboratory had significantly 

higher levels of tetrodotoxin in their tissues than caddisflies that did not consume newt 

eggs (df = 22, F = 5.06, P < 0.001, Fig. 5–6). Many of the caddisflies frozen immediately 

after collection from Soap Creek ponds had elevated levels of TTX. However, total TTX 

(ng) was negatively correlated with body mass (N = 32, F = 55.86, R
2
 = 0.65, P < 0.001, 

Fig. 5–6). Caddisfly larvae collected at Soap Creek ponds but reared in the lab retained 

TTX despite being maintained on an egg-free diet (Fig. 5-6). Larvae that successfully 

pupated and eclosed in the laboratory also retained similar TTX levels, with some 

individuals retaining TTX for at least 135 days after collection (Fig. 5–6). Nine larvae 

and nine adult caddisflies from Utah (H. occidentalis) did not possess tetrodotoxin. 
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Figure 5–6. Is the TTX present in newt eggs sequestered by caddisflies? (Top) Mean 

(± SE) total amount of TTX (ng) present in the tissues of caddisflies that had consumed 

five eggs in the laboratory. Caddisflies that consumed eggs had significantly higher levels 

of tetrodotoxin than caddisflies that did not consume eggs (df = 22, F = 5.059, P < 0.001). 

(Middle) The total amount of tetrodotoxin (ng) in the tissues of larval caddisfly 

Limnephilus flavastellus in relation to body mass (N = 32, F = 55.86, R
2
 = 0.651, P < 

0.001). Caddisflies were frozen immediately after collection from a pond containing 

actively breeding newts. (Bottom) Total amount of TTX (ng) present in caddisflies 

collected from a pond with actively breeding newts and reared in the lab. 
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4. WHAT IS THE POTENTIAL FOR INDIRECT SELECTION BY 

CADDISFLIES TO LEAD TO ELEVATED TOXICITY IN NEWTS? 

Caddisflies consumed progressively fewer eggs as the amount of TTX in the eggs 

increased (Fig. 5–7). There was a significant difference in the number of eggs consumed 

by caddisflies when those eggs contained low (569 ng), medium (676 ng), or high (1108 

ng) quantities of TTX (F[2,82] = 6.75, P = 0.002, Fig. 5–7). In the low and medium TTX 

treatments, 28% and 31% of caddisflies failed to consume any eggs, respectively. In 

contrast, 55% of caddisflies in the high TTX treatment failed to consume a single egg.  

Further, in the low TTX treatment 49% of caddisflies consumed two or more eggs, 

whereas 31% and 14% of caddisflies in the medium and high TTX treatments consumed 

two or more eggs.  The maximum number of eggs consumed (maximum possible was 10) 

in the low, medium, and high TTX treatments was 10, 3, and 2, respectively. 

 

DISCUSSION 

EVOLUTION OF BEHAVIOR IN PREDATOR AND PREY 

Caddisflies are major predators of newt eggs and appear to be resistant to the 

negative effects of tetrodotoxin poisoning (see Chapter 3). In addition, caddisflies possess 

a series of behavioral responses that likely increase access to newt eggs. One species of 

caddisfly, L. concolor, responded to the presence of gravid female newts by increasing 

activity. The most abundant species (L. flavastellus) was specifically attracted to 

chemical cues emanating from gravid female newts, as well as the presence of recently 

deposited eggs. Surprisingly, this response disappeared after the female newts had  
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Figure 5–7. What is the potential for indirect selection by caddisflies to lead to 

elevated toxicity in newts? Mean (± SE) number of eggs consumed by caddisflies 

containing low (569 ng), medium (676 ng), or high (1108 ng) concentrations of TTX. 

Different letters indicate significant differences between treatments (P < 0.05). 
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completed egg deposition. These results, combined with the lack of response to male 

newts and TTX in an agar solution, indicates that a response is contingent upon a specific 

cue present during gravidity that is currently unknown. 

Previous studies have determined that caddisfly larvae can detect and respond to 

water-born chemical stimuli (Boyero et al. 2006; see Chapter 2), yet in these cases, 

changes in behavior were the result of exposure to predators. Spanhoff et al. (2005) 

examined the response of caddisflies with intact and excised antennae to patches of algal 

biofilm. The authors found that random movement, rather than attraction to chemical 

cues from those patches, was the method used to locate food. Unlike periphyton or 

detritus, eggs provide a resource rich in lipids and protein, and caddisflies are often found 

in aggregations on dead fish and egg clusters from fish and amphibians (Murphy 1961; 

Brusven and Scoggan 1969; Fox 1978). Caddisflies attain greater sizes when they 

consume eggs in the laboratory (see Chapter 3), and larger sizes have been correlated 

with greater egg production in female caddisflies (Spanhoff 2005; Jannot 2009). 

Caddisflies that respond to cues indicating the presence of eggs would likely consume 

more eggs in the wild, thereby gaining a fitness advantage. Further, both strategies for 

finding eggs would likely increase the rate at which caddisflies find and consume newt 

eggs in nature, further strengthening their role as a selective agent on the newt 

population. 

Given the potential for caddisflies to influence selection on newts via egg 

predation, one would predict the evolution of behavioral strategies by newts that limit 

predation on their progeny. In this laboratory study, female newts avoided egg predators 

by ovipositing in microhabitats relatively inaccessible to predatory caddisflies. Caddisfly 
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locomotion is generally limited by the presence of a portable case (Dodds and Hisaw 

1925), and most species are restricted to benthic habitats (Betten 1934; Mackay and 

Wiggins 1979). In the laboratory, caddisfly abundance decreased with increasing plant 

height, indicating that L. flavastellus does not commonly use the upper portions of 

aquatic vegetation. Larger caddisfly larvae, which consume greater numbers of eggs in 

the laboratory (see Chapter 3), are even less prone to climb vegetation than are smaller 

larvae, and larger wild-caught caddisflies possessed lower quantities of TTX, further 

indicating large larvae are not consuming eggs in the wild and may be inefficient 

predators on newt eggs. This spatial isolation has yielded a microhabitat that serves as an 

optimal oviposition site for female newts.  

Discrimination between oviposition sites has been shown to affect offspring 

survival and parental fitness. For example, phytophagous insects often exhibit strong 

preference for specific host plants, and offspring survival on these plants is often higher 

than on non-preferred species (Rausher 1980; Thompson and Pellmyr 1991). For prey 

with access to discrete oviposition sites that vary in predation risk, avoidance of habitats 

containing egg or larval predators may greatly increase offspring survival. For example, 

mosquitos avoid depositing eggs in habitats containing predatory notonectids, 

amphibians, and fish (Chesson 1984; Petranka and Fakhoury 1991). Several treefrog 

species (Hyla) deposit more eggs in artificial ponds that lack predatory conspecifics, 

salamanders, and fish than in ponds containing these predators (Resetarits and Wilbur 

1989; Crump 1991; Resetarits and Wilbur 1991; Resetarits 1996). In these cases, predator 

dispersal is limited (e.g. fishes), and successful oviposition is dependent on the presence 

of habitats that completely lack predators (e.g. Hopey and Petranka 1994). Caddisflies are 
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highly mobile as adults (winged) and inhabit almost all freshwater ecosystems (Wiggins 

and Currie 2008). It is therefore unlikely that female newts would find a completely new 

pond that lacked these predators. However, because predation pressure from caddisflies 

varies spatially within a pond, newts are able to reduce the risk of predation on their eggs 

by selecting oviposition sites within a breeding habitat that are less accessible or 

unsuitable to caddisflies. 

Spatial variation in predation pressure likely has driven the evolution of 

behavioral responses to avoid egg predators and increase female fitness. For this 

behavioral strategy to be effective, eggs deposited high in the water column must be more 

likely to survive. Results from our field experiment indicate that eggs deposited higher in 

the water column are indeed subjected to reduced predation and may therefore be more 

likely to survive to hatching. Therefore, female newts increase total lifetime fitness by 

shifting oviposition upward in the water column. 

 

POTENTIAL FOR SELECTION 

Maternal toxicity is correlated with egg toxicity in newts (Hanifin et al. 2003). 

This relationship implicates predation on newt eggs as a potential pathway for indirect 

selection on toxicity, one that could ultimately yield elevated TTX levels in adult newts. 

It was previously unclear whether egg consumption by a predator was capable of 

influencing selection on toxicity. For selection to operate on the toxicity of adult newts 

caddisflies must preferentially consume more eggs that contain lower quantities of TTX. 

In no-choice trials caddisflies consumed almost five times more eggs that contained 

lower (500 ng), as opposed to higher (1100 ng), quantities of TTX. This difference in 
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preference suggests that they have the potential to indirectly drive the selective 

environment of the newt population. 

It is unclear how caddisflies distinguish between palatable eggs (low TTX) and 

less palatable eggs (high TTX) without sampling the contents of each egg. There is very 

little variation in toxicity level within a clutch of eggs from a female newt (Hanifin et al. 

2003), and sampling one egg would provide a reliable measure of the toxicity of the other 

eggs. Similarly, the Bella moth (Utetheisa ornatrix) provisions its eggs with pyrrolizidine 

alkaloids, which are then deposited in clusters on the larval food plant (Dussourd et al. 

1988). A predator of those eggs, larvae of the green lacewing (Ceraeochrysa cubana), 

sample one or a few eggs from a clutch and reject clusters that contain high 

concentrations of the toxin (Eisner et al. 2000). However, in our study more than half of 

the caddisflies given the most toxic eggs avoided the eggs entirely, indicating that some 

other method of discrimination is likely utilized by caddisfly larvae to assess the toxicity 

of newt eggs. 

Caddisflies attain larger sizes when they consume toxic eggs in the laboratory 

compared to control individuals that do not consume eggs (see Chapter 3), and it is 

possible that retaining the TTX present in these eggs may provide additional fitness 

benefits. Caddisflies that consume eggs in the laboratory sequester small concentrations 

of TTX in their tissues. Sequestration of toxins from prey occurs in a variety of 

organisms including insects (Eisner et al. 1997; Nishida 2002), New Guinea passerine 

birds (Dumbacher et al. 1992; Dumbacher et al. 2004), dendrobatid frogs (Daly et al. 

1994), and bufophagous snakes (Hutchinson et al. 2007). Similarly, garter snakes that 

consume toxic newts sequester TTX in the liver (Williams et al. 2004). Tetrodotoxin was 
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found in the tissues of wild-caught caddisflies and was retained by some individuals 

through metamorphosis. Organisms that sequester toxins are assumed to utilize it for 

defense (Brower and Glazier 1975; Dussourd et al. 1988), and the TTX present in 

caddisflies may protect the larvae or winged-adults or could be secondarily transferred to 

the caddisflies’ eggs or offspring (e.g. Eisner et al. 2000; Hutchinson et al. 2008). If TTX 

does serve a defensive function in caddisflies, individuals that are able to consume and 

sequester greater quantities of toxin may receive a fitness advantage, leading to greater 

tolerance and preference for TTX laden eggs. 

 

IMPLICATIONS FOR COEVOLUTION 

The phenotypic interface of the coevolutionary arms-race between newts 

(Taricha) and garter snakes (Thamnophis) is the potent neurotoxin tetrodotoxin. In this 

well characterized system newts have evolved extreme toxicity, which has been 

countered in snakes via modifications to the amino acid sequence of the sodium channel 

protein, thereby conferring resistance to TTX poisoning (see review in Brodie 2010). The 

level of selection on each population is geographically variable, with one of the most 

intense interactions occurring in the Willamette Valley of Oregon (Hanifin et al. 2008). 

Newts originated in the early Cretaceous (approximately 100 million years ago; Zhang 

and Wake 2009), whereas the ancestor of modern colubrid snakes (Colubridae), including 

garter snakes (Thamnophis), did not originate until at least 50 million years later (Pyron 

and Burbrink 2011). All modern newts possess tetrodotoxin (Hanifin 2010); therefore its 

evolution in salamanders preceded the origin of garter snakes. There may be multiple 

selective influences on the evolution of toxicity, and understanding the origin of extreme 
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toxicity in the arms-race requires analyzing the role of alternative predators in toxin 

evolution. 

The interaction between caddisflies and newts is complex, and the question 

remains: Are caddisflies and newts involved in a coevolutionary interaction? For this 

process to occur, natural selection imposed by caddisflies must lead to defensive 

adaptations in newts, which further increases selective pressure on caddisflies to exploit 

their prey (i.e. reciprocal selection). Over three-quarters of a million caddisflies may 

occupy a single pond from central Oregon and that under optimal conditions they have 

the potential to consume the entire reproductive output of a newt population in as little as 

36 hrs (see Chapter 3). Further, caddisflies possess behavioral adaptations that likely 

increase their ability to find and consume newt eggs.  This may be partially moderated 

however by behavioral adaptations of female newts to reduce predation on their eggs. 

Although the details are unknown, caddisflies appear to be at least partially resistant to 

the negative effects of TTX (see Chapter 3), indicating that selection (newt → caddisfly) 

may occur. The preference that caddisflies exhibit for lower toxicity eggs has the 

potential to lead to the elevation of toxicity (caddisfly → newt). Although the results of 

this study do not demonstrate reciprocal selection between newts and caddisflies, the 

interaction between these species is multifaceted and could potentially involve this 

process. 

Ultimately, the predator-prey arms-race between snakes and newts may be 

influenced by caddisflies if the correlation between egg toxicity and maternal toxicity, 

combined with selective egg predation, leads to indirect selection on the toxicity of 

newts. At the extreme, snake resistance, believed to be due to selection from newts, could 
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be due to correlational selection with caddisflies if the primary selective pressure driving 

adult toxicity is egg predation. In this case, snake resistance may be “hitchhiking” on an 

arms-race between caddisflies and newts. Nevertheless, the reciprocal pathway is also 

possible, and caddisflies may be consuming toxic eggs only as a byproduct of 

coevolution between snakes and their toxic prey. Certainly, each player may be 

influencing the traits of the other to some degree, and only additional research will begin 

to elucidate the extent of interaction between these three players in the evolution of the 

arms-race between toxicity and resistance. 

 Most organisms have multiple predators, and understanding the evolution of an 

arms-race requires an analysis of the selective role of all potential predators. The 

ancestors of caddisflies (Trichoptera) arose approximately 225 million years ago 

(Wiggins 2004), well before the origin of newts; recent work has demonstrated that 

caddisflies may be major players in the arms-race revolving around tetrodotoxin (see 

Chapters 3 and 5). Specifically, newts and caddisflies exhibit a series of behavioral 

adaptations that limit egg predation and facilitate egg consumption, respectively, that is 

redolent of a behavioral arms-race. Moreover, the TTX sequestered by caddisflies and the 

preference they exhibit for eggs with less toxin indicate reciprocal selection between 

newts and caddisflies is possible, and that this interaction may influence the 

coevolutionary process between newts and snakes. 
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CHAPTER 6 

SUMMARY 

 The goal of this research was to provide a greater analysis of the predator-prey 

interactions between newt eggs and larvae and their predators (Table 6.1).  Understanding 

these relationships begins to fill a major gap in our knowledge of the evolutionary arms-

race revolving around tetrodotoxin (TTX) by defining the role egg and larval predation 

may have on the toxicity of adult newts (Table 6.1; Brodie 2010). 

I began (Chapter 2) by determining that larval caddisflies respond to chemical 

stimuli from potential predators (Rainbow trout; Oncorhynchus mykiss) with predator 

avoidance behavior (see Chapter 2).  Chemical cues are widely used by aquatic 

vertebrates and invertebrates for all aspects of their ecology including foraging, 

reproduction, and predator avoidance (Wisenden and Chivers 2006; Ferrari et al. 2010).  

It was previously unclear if caddisflies responded to chemical stimuli (Malmquist 1992), 

yet data presented here indicate caddisflies use chemical cues to acquire information from 

their environment (see Chapter 2), which is similar to other aquatic insects (e.g. Sih 1986; 

Huryn and Chivers 1999; Blaustein et al. 2005).  In addition, caddisflies modified their 

behavior in response to cues from injured conspecifics indicating the presence of a 

chemical alarm cue in caddisflies, the first demonstration of an alarm cue in Trichoptera 

(see Chapter 2).  The behavioral responses exhibited by caddisflies toward predators 

provided a validation of techniques and suggested testing their responses to other 

chemical cues, such as those emanating from gravid female newts and their eggs (see 

Chapter 5) would be a fruitful area of research. 
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Table 6.1. Summary of the known attributes of the interaction between caddisflies, newts, 

and snakes. 

  

Caddisflies 

Extremely abundant (This Study, Chapter 3) 

Feed on newt eggs (This Study, Chapter 3) 

Resistant to negative effects of TTX (This Study, Chapter 3) 

Larger larvae consume more eggs in the lab (This Study, Chapter 3) 

Attracted to gravid female newts (This Study, Chapter 5) 

Attracted to recently deposited newt eggs (This Study, Chapter 5) 

Primarily benthic and do not climb vegetation (This Study, Chapter 5) 

Large larvae do not climb as high as small larvae (This Study, Chapter 5) 

Sequester tetrodotoxin after eating newt eggs (This Study, Chapter 5) 

Sequestered toxin retained through metamorphosis (This Study, Chapter 5) 

Prefer consuming eggs with less TTX (This Study, Chapter 5) 

Newts 

TTX stored in the skin, ovaries, and eggs (Twitty 1937; Wakely et al. 1966) 

Egg toxicity correlated with female toxicity (Hanifin et al. 2003) 

Avoid caddisflies by ovipositing at top of water column (This Study, Chapter 5) 

Eggs laid higher are more likely to survive (This Study, Chapter 5) 

TTX deposited in egg retained by larvae and juveniles (This Study, Chapter 4) 

Juveniles with more TTX more likely to survive predation (This Study, Chapter 4) 

Multiple newt species have entered an arms race (Brodie et al. 2005) 

Geographic variation in toxicity (Brodie and Brodie 1991; Hanifin et al. 

1999; Brodie et al. 2002) 

Adults avoid chemical cues from newt-fed snakes (Gall et al. 2011) 

Newts with more TTX more likely to survive predation (Williams et al. 2010) 

TTX increases in long-term captive newts (Hanifin et al. 2002) 

Snakes 

Feed on adult newts (Brodie 1968) 

Resistant to TTX (Brodie 1968; Brodie and Brodie 1990; 

Geffeney et al. 2002) 

Amino acid substitutions to sodium channel protein (Geffeney et al. 2005) 

Some populations have escaped the arms-race (Hanifin et al. 2008) 

Multiple snake species involved in arms race (Brodie et al. 2002; Feldman et al. 2009) 

Ability to self-assess resistance (Williams et al. 2003) 

Geographic variation in resistance (Brodie et al. 2002) 

Trade-off between speed and resistance (Brodie and Brodie 1999) 

Sequester TTX in liver after consuming newts (Williams et al. 2004) 

Preadapted to TTX ingestion (Motychak et al. 1999) 

Allele variation in Nav1.4 correlates with resistance (Feldman et al. 2010)  
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In Chapter 3, I started to evaluate the interaction between newt eggs and their 

predators.  First, I characterized the macroinvertebrate community at my study site and 

tested a suite of these invertebrates for their propensity to consume toxic newt eggs in the 

laboratory.  I estimated that caddisflies were extremely abundant (approximately 775,000 

per 0.21 hectare pond).  Moreover, caddisflies were the only invertebrate to consume any 

number of eggs in the laboratory (see Chapter 3), confirming preliminary observations 

from previous researchers (Lehman 2006; Lehman and Campbell 2007).  All four species 

of caddisflies that co-occur with Taricha at this site consumed newt eggs (see Chapter 3).  

Moreover, individual Limnephilus flavastellus grew substantially larger when they 

consumed eggs compared to when they had access to detritus only (see Chapter 3).  This 

research confirms that caddisflies are resistant to the negative effects of ingesting TTX.  

The extreme abundance of caddisflies, their resistance to TTX, and greater growth when 

provisioned with eggs suggests caddisflies are an important predator of newt eggs and 

have the potential to be a major selective force on the newt population. 

Consumption of TTX laden prey may introduce similar selective pressures on 

ecologically different predators.  For example, garter snakes from the continental United 

States that prey on toxic newts (Taricha) have amino acid substitutions in the sodium 

channel protein that render them resistant to TTX intoxication (Geffeney et al. 2002; 

Geffeney et al. 2005; Feldman et al. 2009).  Moreover, several species of snake from 

Southeast Asia, Japan, and South America prey upon TTX laden prey, and all of these 

species exhibit similar genetic changes rendering them resistant to the negative effects of 

TTX (Feldman et al. 2012). 
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 Unlike the eggs, larval Taricha granulosa were assumed to be extremely 

vulnerable to predation.  Experiments by Twitty and Johnson (1934) and Twitty (1937) 

found that Taricha eggs paralyzed their host when grafted to another species.  The 

paralysis persisted until the yolk was absorbed.  Therefore, Taricha larvae were believed 

to lack tetrodotoxin.  The results of Chapter 4 however indicate that substantial quantities 

of TTX are retained by developing larvae (see Chapter 4).  Although the amount of TTX 

in each individual does decline after hatching, larvae and recently metamorphosed 

juveniles retain approximately 400 nanograms of TTX (see Chapter 4).  This amount of 

TTX was sufficient to repel one of the most voracious predators on amphibian larvae, 

predatory dragonfly nymphs (Anax junius).  Analyzing the toxicity of metamorphosed 

juveniles that were palatable and unpalatable to dragonflies indicated that elevated 

toxicity levels conferred a survival advantage, which is consistent with previous studies 

on the survival advantage of TTX in newts (Williams et al. 2010).  The amount of TTX 

present in larval and metamorphosed juvenile newts was highly variable and likely 

residual from the quantity initially deposited in the eggs.  Because female toxicity is 

correlated with egg toxicity this relationship may continue between larvae and adult 

females (see Chapter 4).  In addition to indirect selection on toxicity via egg predation 

(Hanifin et al. 2003), these results indicate that selection may also operate on adult 

toxicity indirectly through predation on the larvae. 

 The goal of Chapter 5 was to further assess the interaction between caddisflies 

and newts.  Building on information acquired in Chapter 2, it was found that two species 

of caddisfly (Limnephilus flavastellus and L. concolor) were attracted to chemical stimuli 

emanating from gravid female newts and recently deposited newt eggs.  These data, 
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combined with their propensity to consume eggs, greater growth, and great abundance 

(See Chapter 3) further implicate caddisflies as a major selective force on the newt 

population. 

Because eggs are extremely vulnerable to predation (Orians and Janzen 1974) 

many female invertebrates and amphibians have evolved behavioral defenses enabling 

them to detect the presence of egg predators and shift oviposition to habitats that are 

relatively safe for their offspring (e.g. Chesson 1984; Resetarits and Wilbur 1989).  Like 

many of these species, female newts are not defenseless toward predatory caddisflies.  

Gravid female newts responded to the presence of caddisflies by ovipositing away from 

caddisflies and shifting egg deposition to the upper portion of the water column.  If this 

shift in microhabitat use is to be a successful strategy to prevent predation, caddisflies 

must be less likely to utilize this habitat and newt eggs must be more likely to survive in 

this area.  Caddisflies are assumed to be benthic organisms, primarily utilizing the bottom 

of the pond and consuming fallen organic debri (Betten 1934; Mackay and Wiggins 

1979).  In the laboratory, caddisflies primarily utilized the substrate and lowest portion of 

vegetation indicating the microhabitat used as an oviposition site by female newts is 

unsuitable for predatory caddisflies in some way. Further, results from a field experiment 

indicate the second of these tenants, that newt eggs have a greater probability of 

surviving predation in this microhabitat, is also met.  Combined, these results indicate 

complex behavioral strategies have evolved in caddisflies to procure newt eggs and in 

newts reduce the probability of predation on their offspring. 

Organisms that eat toxic prey often sequester some of the toxin and utilize it for 

their own defense.  For example, poison-dart frogs (Dendrobates sp.) in Central and 
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South America sequester large quantities of alkaloids from arthropods and other 

invertebrates they consume from the leaf litter (Daly et al. 1994; Saporito et al. 2007).  

These alkaloids function to repel predators (Daly and Myers 1967; Fritz et al. 1981).  

Relative to their size, caddisflies consume a large amount of TTX when they eat newt 

eggs.  Laboratory experiments identified that caddisflies sequestered small quantities of 

TTX after consuming newt eggs.  Samples from caddisfly larvae collected in the field 

also found similar levels of TTX indicating caddisflies consume newt eggs in nature.  

Further, several caddisflies retained the TTX through metamorphosis (up to 140 days).  

The role of sequestered TTX in caddisflies is unknown, although it may function in 

defense of the larvae or winged-adult, or be secondarily deposited in the caddisflies eggs.  

The amount of TTX retained by caddisflies is insufficient to kill avian and mammalian 

predators (Williams et al. 2004), but may deter other unknown predators [e.g. 

invertebrates; dragonfly larvae are far more sensitive to TTX than birds and mammals 

(see Chapter 4)].  Nevertheless, TTX is also a powerful emetic (Hayama and Ogura 1962; 

Kao 1966) and could function in this role for caddisflies. 

 Finally, to more directly assess the possible influence of caddisflies on newt 

toxicity via indirect selection, I provided caddisflies with eggs of varying toxicity and 

examined their preference for these eggs.  Caddisflies consumed more eggs when those 

eggs contained the least amount of toxin.  Moreover, there was tremendous variation 

between caddisflies in the number of eggs consumed indicating natural variation in either 

the ability or the willingness to consume newt eggs. This preference indicates caddisflies 

have the potential to drive the evolution of toxicity in adult newts by preying upon their 

eggs. 



127 

Additional research is necessary to fully understand whether reciprocal selection 

is occurring between the caddisfly and newt populations.  Specifically, the following 

questions need to be addressed: (1) Is there variation in resistance among caddisflies 

within a population? (2) What patterns of behavior, resistance, and toxicity exist between 

caddisflies and newts across a large geographic scale? (3) Is the gene sequence of the 

sodium channel protein in caddisflies different from populations that do not consume 

newt eggs? (4) When a caddisfly sequesters TTX, where is it stored? 

Is there variation in resistance between caddisflies within a population? 

Assessing individual caddisfly resistance to TTX is difficult; caddisflies cannot be 

injected with TTX and raced down a racetrack, and measuring LD50 is not cost effective.  

Therefore, the most effective method may involve a repeated measures design whereby 

an individual is provided with eggs of varying toxicities to determine the maximum 

amount of toxin the individual consumes.  Although this technique does not enable the 

differentiation between ability and willingness, it may be the most effective way to 

understand the level of variation in resistance within a population.  This question is 

critical to determining whether there is sufficient standing genetic variation for selection 

to operate on caddisfly resistance. 

What patterns of behavior, resistance, and toxicity exist between caddisflies and 

newts across a large geographic scale? It is unknown whether the patterns observed 

between caddisflies and newts from my study population can be extrapolated across a 

wide geographic range.  Therefore, it is necessary to examine this interaction in other 

populations, especially populations that exhibit lower toxicity, to fully investigate the 

possibility that predation on newt eggs is playing a role in the evolution of newt toxicity.  
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The first step will entail collecting gravid female newts and caddisflies from multiple 

populations across the western United States.  These caddisflies will be offered newt eggs 

from their locality to determine if egg predation by caddisflies is widespread or restricted 

to central Oregon.  I will use these data as the basis for examining the extent of 

interaction between caddisflies and newts across their range. 

Is the gene sequence of the sodium channel protein in caddisflies different from 

populations that do not consume newt eggs? Caddisflies appear to be at least partially 

resistant to the negative effects of ingesting TTX, yet one of the most important questions 

yet to be addressed is what mechanism underlies this resistance?  Garter snakes that 

consume toxic newts possess amino acid substitutions in the sodium channel protein that 

confer varying levels of resistance to TTX (Geffeney et al. 2005; Feldman et al. 2009, 

Feldman et al. 2010).  Pufferfishes possess large quantities of TTX in the liver and ovary, 

and genetic deviations analogous to those found in TTX resistant snakes are responsible 

for resistance in these species (Venkatesh et al. 2005).  Further, molluscs exposed to high 

concentrations of saxitoxin (STX) from algal blooms exhibit changes in the P-loop region 

of domain II of the sodium channel, thus conferring resistance to STX (Soong and 

Venkatesh 2006); STX is functionally similar to TTX.  Thus, it seems probable that TTX 

resistance in caddisflies from Soap Creek ponds may be the result of similar action.  The 

first critical phase to answering this question will be to compare the sodium channel gene 

sequences from caddisflies in sympatry and allopatry with toxic newts.  I will also 

compare these sequences to sodium channels from organisms with known resistance to 

investigate whether caddisflies sodium channels possess similar genetic modifications 

that may confer resistance to TTX. 
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When a caddisfly sequesters TTX, where is it stored?  Caddisflies sequester 

tetrodotoxin after consuming newt eggs, and substantial quantities are retained through 

metamorphosis.  Yet, the location where the toxin is stored remains unknown.  I will 

dissect and section adult caddisflies with specific focus on the wings and integument, 

ovaries, testes, and viscera.  This information may provide valuable information about the 

ecological function of TTX in caddisflies. 
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