Econometrics ch. 16.

Mean of a sample \(\bar{X} = \frac{\sum X_i}{n} \)

\(X_i \): observation \(i \)
\(n \): sample size

Variance \(= \frac{\sum (X_i - \bar{X})^2}{n-1} = s^2 \)

Standard deviation \(s = \sqrt{\text{Variance}} \)

\(\bar{X} \): computed mean
\(\mu \): mean in null hypothesis

\(Z \)-statistics: \(\frac{\bar{X} - \mu}{s/\sqrt{n}} \)

Confidence intervals

\(\bar{X} \pm z^* \) (standard error)

Hypothesis test

Compare \(Z \)-stats w/ critical \(Z \) (\(Z^* \))

\(\bar{X} - Z^*(\text{std. error}) < \mu < \bar{X} + Z^*(\text{std. error}) \)

\(\bar{X} \pm Z^*(\text{std. error}) \)

\(z \)-critical given degrees of freedom \(n-1 \)

P-values: probability Ho is true

Lowest level of significance at which Ho can be rejected

(high \(Z \)-value → low p-value)

\(p = 0.03 \)

3\% probability Ho is true

Ho can be rejected at 5\%. It cannot be rejected at 1\%.
\[\bar{X} = 5 \]
\[\text{std. error} = 1 \]
\[N = 25 \]
\[t = 25 - 1 = 2.4 \]

1. **Construct 95\% C.I.**
 \[t^* \text{ two sided } 5\% = 2.064 \]
 \[5 \pm 2.064 \times 1 \]
 \[\left[\begin{array}{c} 2.936 \\ 7.064 \end{array} \right] \]
 95\% population mean within this range.

2. **Hypothesis testing:**
 \[t^* \text{ two sided } 5\% = 2.064 \]
 \[H_0: \mu = 2.5 \]
 \[H_1: \mu \neq 2.5 \]

 \[\frac{5 - 2.5}{1} = 2.5 > t^* \]
 \[\text{Reject} \]

 \[\frac{5 - 3}{1} = 2 < 2.064 \]
 \[\text{Not Reject} \]

 (95\% sure pop. mean between 2.936 \& 7.064)

 Since 3 is within the interval, not surprising we do not reject \(H_0: \mu = 3 \).