Math 461
Sequences and Series in R
(Review from Calculus III -- see Stewart Chapter 12)
The following homework exercises are due Thursday 12-2-10.

A.  Sequences.

Definition.  A sequence in R is a function from the natural numbers {1, 2, 3, ...} to R.  We usually write the function values with subscripts instead of function notation.  For example, instead of writing f (n) = 1/n, we would write: an = 1/n.  The entire sequence is denoted with parentheses: 
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Definition.  Let L be a real number. A sequence 
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in R has the limit L provided that for every 
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.  If a sequence has a real limit L, it is said to be convergent, and we write 
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Exercise 1.  Let 
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Definition.  A sequence 
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in R is bounded if there exist real numbers a and b such that 
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Exercise 2.  For each condition below, give an example of a specific sequence in R which satisfies the condition.

a) The sequence converges to 0, and all the terms an are positive.

b) The sequence converges to 0, and all the terms an are negative.

c) The sequence converges to 0, and the terms alternate between positive and negative.

d) The sequence converges to 5, and all the terms are less than 5.
e) The sequence is bounded and divergent.

f) The sequence is unbounded and divergent.

Exercise 3.  Let L be a real number.  Let 
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Definition.  A sequence 
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in R diverges to infinity provided that for every M > 0, there is an integer N such that for all n > N, an > M.  In this case, we write 
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Definition.  A sequence
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in R diverges to negative infinity provided that for every M < 0, there is an integer N such that for all n > N, an < M.  In this case, we write 
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Exercise 4.  For each condition below, give an example of a specific sequence in R which satisfies the condition.

a) Sequence diverges to infinity.

b) Sequence diverges to negative infinity.

c) Sequence diverges, but 
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Limit Laws for Sequences.  Let 
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d) 
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e) If 
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f) If p > 0 and 
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Squeeze Theorem for Sequences.   Let 
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Exercise 5.  Use the squeeze theorem to find the limit of 
[image: image44.wmf]÷

ø

ö

ç

è

æ

+

n

n

)

2

/

sin(

3

p

.

Definition.  
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Definition.  
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Definition.  
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Monotonic Sequence Theorem.  Every bounded, monotonic sequence in R is convergent.
Exercise 6.  For each sequence below, determine (i) if the sequence converges (if so, find the limit); (ii) if the sequence is monotonic (if so, state "increasing" or "decreasing"); (iii) if the sequence is bounded (if so, find a closed interval containing all the terms of the sequence).  Justify each answer.
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B.  Series

     If we try to add the terms of an infinite sequence, we get an expression of the form 
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 which is called an infinite series (or just a series) and is denoted by the symbol 
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     For some sequences, it may not make sense to try to add all the terms.  For example, if 
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     For other sequences, it does seem to make sense to add all the terms and produce a real number result.  For example, if 
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1/2 + 1/4 = 3/4, and 1/2 + 1/4 + 1/8 = 7/8, and 
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, it seems that as n approaches infinity the sum will approach 1.  We make this idea precise by defining the partial sums of a sequence.
Definition.  Given a series 
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.  The number s is called the sum of the series.  If there is no such limit for the partial sums, we say the series is divergent.
Exercise 7.  Calculate the first 5 partial sums for each series, and try to decide whether the series converges or diverges.
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     If 
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Divergence Test.  If 
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Exercise 8.  Use the divergence test to prove that the following series diverge.
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Definition.  If there exist real numbers a and r such that 
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Geometric Series Test.  The geometric series with ratio r is convergent iff | r | < 1.  In this case, the sum of the series is 
[image: image92.wmf]r

a

ar

ar

ar

a

n

-

=

+

+

+

+

+

1

2

L

L

.

Exercise 9.  Find a geometric series with ratio 1/3 which converges to the sum s = 5.

Exercise 10.  State each of the following tests (consult your calculus book), and give a specific example for each.

a) Integral Test

b) p-series Test

c) Comparison Test (for showing convergence)
d) Comparison Test (for showing divergence)

e) Limit Comparison Test

f) Alternating Series Test

g) Absolute Convergence Test

h) Ratio Test

i) Root Test
Exercise 11.  What does it mean for a series to be absolutely convergent?  To be conditionally convergent?  Give a precise definition for each term, and give a specific example for each.
Exercise 12.  Can a series be conditionally convergent if all its terms are positive?  Explain.
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