Math 143

Supplementary material for Section 28

The following is adapted from Introduction to the Design and Analysis of Algorithms, Second Edition, by Anany Levitin (Pearson, 2007).
An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time. An input to an algorithm specifies an instance of the problem the algorithm solves.
Several algorithms for solving the same problem may exist. Different algorithms for the same problem can be based on very different ideas and can solve the problem with dramatically different speeds.
Example: Design an algorithm for checking whether two given strings are anagrams of each other.

The most common way to analyze an algorithm's running time is to identify the algorithm's most important operation, its basic operation, which is the operation contributing the most to the total running time, and compute the number of times the basic operation is executed (as a function of the size of the input).

Efficiency analysis ignores multiplicative constants and focuses on the count's order of growth to within a constant multiple. Also, for small input sizes most any algorithm will be fast; efficiency analysis concentrates on the growth of the number of computations required as the input size approaches infinity.

Exercise: Fill in function values in the following table. Which functions are "slow" growing? Which are "fast" growing?

	n
	log2(n)
	n
	n log2(n)
	n2
	n3
	2n

	10
	
	
	
	
	
	

	102
	
	
	
	
	
	

	103
	
	
	
	
	
	

	104
	
	
	
	
	
	

	105
	
	
	
	
	
	

	106
	
	
	
	
	
	

Exercise: Review the definition of logb(n) and recall its basic properties (b is the base; assume
b > 0 and b is not 1).
To compare and rank the growth rates for different running-time functions, computer scientists use three notations: O (big oh), Ω (big omega), and Θ (big theta). In the following discussion, the functions t(n) and g(n) can be any functions taking non-negative real-number values on the domain N. We imagine t(n) to be an algorithm's running time (usually indicated by its basic operation count, where n is the size of the input), and g(n) will be some simple function to compare t(n) with.
Definition 1

t(n) is in O(g(n)) provided t(n) is bounded above by some constant multiple of g(n) for all values of n which are sufficiently large. More formally,
[image: image1.wmf]))

(

(

)

(

n

g

O

n

t

Î

 provided
[image: image2.wmf])

(

)

(

,

,

,

0

0

0

n

g

c

n

t

n

n

N

n

c

×

£

³

"

Î

$

>

$

Exercise: Prove that 100n + 5 is in O(n2). Illustrate with a graph.
Exercise: Prove that 10n2 + 100n + 1000 is in O(n2). Illustrate with a graph.

Definition 2
t(n) is in Ω(g(n)) provided t(n) is bounded below by some constant multiple of g(n) for all values of n which are sufficiently large. More formally,
[image: image3.wmf]))

(

(

)

(

n

g

n

t

W

Î

 provided
[image: image4.wmf])

(

)

(

,

,

,

0

0

0

n

g

c

n

t

n

n

N

n

c

×

³

³

"

Î

$

>

$

Exercise: Prove that .01n is in Ω(
[image: image5.wmf]n

). Illustrate with a graph.

Exercise: Prove that .001n2 is in Ω(n). Illustrate with a graph.

Definition 3

t(n) is in Θ(g(n)) provided t(n) is bounded above by some constant multiple c1 of g(n), and is bounded below by some constant multiple c2 of g(n), for all values of n which are sufficiently large. More formally,
[image: image6.wmf]))

(

(

)

(

n

g

n

t

Q

Î

 provided
[image: image7.wmf])

(

)

(

)

(

,

,

,

0

,

0

1

2

0

0

2

1

n

g

c

n

t

n

g

c

n

n

N

n

c

c

×

£

£

×

³

"

Î

$

>

$

>

$

.
Exercise: Prove that
[image: image8.wmf])

(

)

1

(

2

1

2

n

n

n

Q

Î

-

.
_1351590137.unknown

_1351590139.unknown

_1351590140.unknown

_1351590141.unknown

_1351590138.unknown

_1351590135.unknown

_1351590136.unknown

_1351590134.unknown

