CS 225
Lab 9: HashTable class, part 1
Due date: TBA (will start part 2 on Friday)
In this lab, we start work on creating a HashTable class in Java, using separate chaining. We have several tasks:
· Implement a Record class (make it Comparable) for use with our hash table. Each record will have a unique identifier of type int (key) and a field of type Object (value) for storing additional information.
· Revise our SLList class to store objects of type Record instead of the more general type Comparable. Revise existing methods as needed. Add a find method.
· (Lab 10) Implement a HashTable class using separate chaining. The hash table will have an array of type SLList for the “buckets,” a hash function for computing the hash value from the key, and methods to insert, find, and delete records.
What to do:

1. In Eclipse, inside your algorithms package, create a new class called Record.
2. Go to vault, find the page for CS 225 http://vault.hanover.edu/~wahl/CS225J_WIN_2012.htm
and follow the link to lab 9 source code. Copy the entire source code file for Record. Back in Eclipse, in the Record class, “select all” and paste. Save. Resolve any compilation errors.
3. Read through the source code for Record. Ask about anything that’s unclear.

4. Run the Record class and examine the output. Do you see how the compareTo method works?

5. Give SLList a new data member: int size; // number of nodes in list
6. Revise all existing SLList methods so that size is initialized to zero when the list is created, and size is incremented/decremented as needed.

7. In the Node class (inner class of SLList), in the data fields section, change “Comparable data” to “Record r”.
8. Change the parameter list for insert. The input is now a Record r (not a generic Comparable object). Fix any resulting compilation errors.
9. Revise the delete method. The input parameter is now an int k (the key of the record to be deleted.) Fix any resulting compilation errors from changing the parameter list.

10. Change the parameter list for contains (int k). Fix any resulting compilation errors from changing the parameter list.
11. Revise SLList.main to resolve any compilation errors from the above changes. Run SLList; fix any problems.
12. Write a find method for SLList. find has the same parameter list as delete, and a similar implementation. But, instead of deleting the node, find leaves the list unchanged and returns a reference to the matching record. [If a record with that key does not exist in the list, the find method returns a null reference.]

13. Add code at the end of main to test the find method. Add more testing of other methods if needed. Run and debug.
