CS 225

Lab 9: HashTable

Due Tuesday 4-2-13, 5 PM
In this lab we implement a separate-chaining hash table. Before writing the HashTable code itself, we need three supporting classes:
· Record
· has key (type int), a unique identifier for the record

· has value (type Object) for storing the record’s other information

· Node
· has data (type Record)

· has next (type Node)
· SLList
· has head (type Node) for referencing the first node in the list
· has length (type int)
A Node is visualized as follows:

[image: image1.png]data

aext

Here is a SLList of length 3:

[image: image2.png]bead TN

aull

We hide the node class inside the list class to separate the list’s implementation from its interface; this is accomplished by declaring Node as an inner class. An inner class, or nested class, is a class which is defined within the scope of an outer class.
What to do:

· Create a new project folder in Eclipse to hold the classes for this lab. Create a new class named Record. Create a new class named SLList.
· Copy the code provided for Record.java and SLList.java from our class vault page; paste into Eclipse and save.
· Read through the main method of SLList. Then run SLList and examine the output to check that it seems to be working properly.

Now you’re ready to create your own separate-chaining hash table. The following information from Wikipedia.org gives a nice overview of the separate chaining approach.

Hash collision resolved by separate chaining.

In the strategy known as separate chaining, direct chaining, or simply chaining, each slot of the bucket array is a pointer to a linked list that contains the key-value pairs that hashed to the same location. Lookup requires scanning the list for an entry with the given key. Insertion requires adding a new entry record to either end of the list belonging to the hashed slot. Deletion requires searching the list and removing the element. (The technique is also called open hashing or closed addressing.)

Chained hash tables with linked lists are popular because they require only basic data structures with simple algorithms, and can use simple hash functions that are unsuitable for other methods.

The cost of a table operation is that of scanning the entries of the selected bucket for the desired key. If the distribution of keys is sufficiently uniform, the average cost of a lookup depends only on the average number of keys per bucket—that is, on the load factor.

Chained hash tables remain effective even when the number of table entries n is much higher than the number of slots. Their performance degrades more gracefully (linearly) with the load factor. For example, a chained hash table with 1000 slots and 10,000 stored keys (load factor 10) is five to ten times slower than a 10,000-slot table (load factor 1); but still 1000 times faster than a plain sequential list, and possibly even faster than a balanced search tree.

For separate-chaining, the worst-case scenario is when all entries were inserted into the same bucket, in which case the hash table is ineffective and the cost is that of searching the bucket data structure. If the latter is a linear list, the lookup procedure may have to scan all its entries; so the worst-case cost is proportional to the number n of entries in the table.

Our hash table will have the following essential elements:
· an array A of type SLList[] for the buckets
· an int, called tablesize, which equals A.length (makes code easier to read)
· a hash function h for computing a hash value (for a given key and given tableSize)

· methods to insert, find, delete, print the table, etc.

What to do:

1. Create a new class called HashTable.

2. Give your class private data fields as follows:

a. private SLList[] A; // the table, or “buckets”
b. private int tablesize; // the number of buckets
3. Write a public 1-argument constructor. The argument is n, the desired table size.

4. Write the hash function. I’ve suggested an implementation below; experiment with other ideas if you like. The goal is to distribute keys among the table positions as uniformly as possible. Multiplying by the prime number 107 should tend to help spread the values around in the table. We have to mod by tablesize, of course, to be sure the result is in the proper range for indexing in A.

// hash function

// input: key value k (type int)

// output: corresponding hash value in range 0..tablesize

public int h(int k)

{

return (107*k)%tablesize;

}
5. Write the insert method. Here are the comments and the declaration line:

// insert

// input: Record r to be inserted into the table

// output: if a record with this key is already in the table,

// do not insert; return false. Otherwise, insert & return

// true

public boolean insert(Record r)
6. Write the find method.

// find

// input: key k of record to be found

// output: reference to the corresponding record (null if not found)

public Record find(int k)
7. Write the delete method.

// delete

// input: key k of record to be found

// output: true if record found and deleted; false otherwise

public boolean delete(int k)
8. Write the printTable method.
// print table

public void printTable()

Each line of output should start by printing the bucket number, then a colon, followed by the result of printList on that list object. For a table of size 13, with 7 entries, the output should look similar to the following:
Bucket #0: [key = 273; value = Grumpy]

Bucket #1: <emptyList>

Bucket #2: [key = 512; value = Dopey]

Bucket #3: [key = 911; value = Sneezy]

Bucket #4: <emptyList>

Bucket #5: [key = 812; value = Sleepy]

Bucket #6: <emptyList>

Bucket #7: [key = 882; value = Doc]

Bucket #8: [key = 501; value = Happy]

Bucket #9: <emptyList>

Bucket #10: <emptyList>

Bucket #11: <emptyList>

Bucket #12: [key = 381; value = Bashful]

9. Write the printListSizes method.

// print list sizes (on a single line of output)

public void printListSizes()

For example, the hash table shown above would result in the following output:

Current list sizes: 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1

10. Write the loadFactor method.

// calculate load factor = number of entries divided by

// tablesize

public double loadFactor()
11. Go to vault and follow the link for Lab 9 main method. Copy the code for the main method and paste it at the end of your HashTable class. Save and run. Troubleshoot any problems you encounter.

12. Write JUnit test code for the following methods only: insert, find, delete, loadFactor.
13. When your code seems to be working properly, zip together your HashTable.java and JUnit testing files. Send to me via email attachment.
