CS 225A, 10-6-08 and 10-10-08
Labs 9 and 10: Quicksort & timing data, continued; Insertion sort
1. Notice that in the pseudocode given in the textbook for Partition, the index i can go out of bounds. (Why?) Fix Quicksort so that it doesn't crash the program. An efficient way to prevent i from going out of bounds is to add a "sentinel" value at the end of the array to be sorted.
· In the "sort" method, declare A to be one longer than you currently have it.
· Fill that new last position in A with a string which will never need to precede a pivot value.
· Revise your initial call from "sort" to "quicksort" to include this new last position of A.
· Don't change the for loop which writes the sorted strings to the output file; we don't want to include the sentinel value in the results.
2. In order to get dependable timing information on a sort which runs very quickly (small n), you need to run the same sort many times in a row, and average the results. Add the following functionality to your StringSort class by revising the code in the "main" method:
· The menu should ask the user how many times to perform the sort (input r, r >= 1).

· Use a loop to call "sort" r-many times, keep a running total of the individual sort times, and report the average sort time (total divided by r) in milliseconds.

· After reporting the average sort time, query the user whether to run another sort or to quit.

3. Add two methods to Util, and test their operation:

· "inorderInput" creates a text file of 1 million strings of length 5, with the strings appearing in ascending order.

· "reverseorderInput" creates a text file of 1 million strings of length 5, with the strings appearing in descending order.
Advice for "inorderInput": 25*25*25*8*8 = 1 million. We can let the first three letters range from ‘a’ through ‘y’, and the last two from ‘a’ through ‘h’.

 // Generates 1 million in-order string objects and writes them

// to a file

 // input: void

 // returns: void

 // note: all generated strings have length 5 and are written

// to a file named "inOrderText.txt"

 public static void inorderInput() throws Exception

 {

 java.io.File file = new java.io.File("inOrderText.txt");

 java.io.PrintWriter output = new java.io.PrintWriter(file);

 StringBuffer buff = new StringBuffer("aaaaa"); // first string

 char c1, c2, c3, c4, c5;
 // use a 5-nested for loop, based on the char indices c1, c2,

// etc., to create 1 million inorder strings and write them

// to the output file

// ???
 // close the file

 output.close();

 }

 // main method to create the large in-order input file...

 public static void main(String[] args) throws Exception {

 inorderInput();

 System.out.println("Your file of in-order strings has been created.");

 }

4. Revise the "sort" method to accept another parameter, specifying which type of input to use: random, in order, or reverse order. Then, revise your code in "main" to have the menu query the user for the desired input type.
5. Add a new sorting option, insertionSort, to your StringSort class. Of course, you'll need to update your menu in "main" and revise the "sort" method accordingly.
6. In order to reduce the time it takes to gather data on sorting performance, "comment out" the for loop in the "sort" method which actually writes the sorted array to the output file.

7. Gather data on average sort time for the various algorithms on random input. Organize your results in the table below. Which sort seems best on random input? _____________________
Random order input:
	Sort
	n=10000
	n=20000
	n=30000
	n=40000

	selection sort
	
	
	
	

	bubble sort
	
	
	
	

	mergesort
	
	
	
	

	quicksort
	
	
	
	

	insertion sort
	
	
	
	

8. Gather data to compare performance on different input types for each algorithm. Which sort seems best on in-order input? ______________________ On reverse-order input? ______________________
