CS 225
Lab 8: Singly Linked List Class
Due date: Weds 3/21/12 (11 AM)
In this lab you will create a pair of simple Java classes to implement the singly-linked list ADT:

· a Node will have a private data member called data (type Comparable) and a private data member called next (type Node)
· a SLList will have a private data member called head (type Node).

A Node is visualized as follows:

[image: image1.png]data

aext

Here is a SLList of length 3:

[image: image2.png]bead TN

aull

We don’t want an external user to have direct access to the list nodes (they could mess with the links and “break” the list), so we hide the node class inside the list class. This is accomplished by declaring Node as an inner class.
An inner class, or nested class, is a class which is defined within the scope of an outer class. The source code file for the outer class also includes the source code for the inner class. (At compile time, a separate .class file will be created for the inner class.)
What to do:

1. In Eclipse, create a SLList class.
2. Use the following syntax within the class definition for SLList to declare Node as an inner class (insert this code just above SLList.main):

private class Node

{

 // implementation of Node class goes here

}
3. Declare private data members for both classes as outlined above.

4. Give SLList a public 0-argument constructor for creating an empty list.
5. Write a toString method in the Node class; it returns the toString() value of this.data. Node.toString should be a public method with return type String.
6. Give the SLList class an isEmpty method (return type boolean).

7. Give the SLList class an insert method, return type void. insert takes an input of type Comparable (val), creates a Node (temp) to hold val, and inserts temp at the front of the list on which the method was called. Insert should run in constant time, Ɵ(1).
8. Write a contains method for SLList, return type boolean. The input is an object (val) of type Comparable. If the list contains a node curr such that curr.data.compareTo(val)==0 is true, return true. Otherwise, return false. Contains should run in linear time relative to the length n of the list, Ɵ(n).
9. Write a delete method for SLList, return type void. The input is an object (val) of type Comparable. If the list contains a node curr such that curr.data.compareTo(val)==0 is true, remove curr from the list and return true. Otherwise, return false. [Only the first occurrence of val will be deleted from the list.] Delete should run in linear time relative to the length n of the list, Ɵ(n).

10. Give the SLList class a printList method. Use a while loop to traverse the list; for each node “curr” in the list, print curr.data inside a pair of brackets, and separate the bracketed list items with commas. Don’t put a comma after the last item. For example, if my list is Larry -> Mo -> Curly, then the resulting output from printing my list should look like:

[Larry], [Mo], [Curly]

11. Write a main method to test SLList. Be sure to try all the methods, including special cases for all the methods such as deleting the head or inserting into an empty list.
To submit your lab: Please email me your source code (SLList.java attachment) and a text file containing your output. Due before class on Weds 3/21.
