CS 225A, 10-3-08
Lab 8: Quicksort; timing data
1. Add a method "quicksort" to the StringSort class:
/* Uses quicksort to sort an array of strings

 * Input: an array of non-null String objects

 * Output: none (but the array is sorted)

 */
public static void quicksort(String[] A)
{

// method body here

}

2. Add a method "partition" to help the quicksort method:

/* Partitions a subarray by using its first element as a pivot

 * Input: an array of non-null Strings, an index for the left end

 * of the subarray, and an index for the right end of the subarray

 * (left < right)

 * Output: split position s such that the subarray is partitioned

 * with positions left through s-1 holding values <= position s value,

 * positions s+1 through right holding values >= position s value.

public static int partition(String[]A, int l, int r)

{

// method body here

}

3. In the "main" method of StringSort, add quicksort as a fourth option in the menu.
4. Run StringSort. Use the quicksort option and verify that quicksort is working. How large can you make the input size before quicksort bogs down?

5. Insert the following commands into your "sort" method and use them to calculate the total time (milliseconds) required to perform the specified sort. Change the return type of "sort" to long (not void) and return the total sorting time at the end of the method.

long startTime = System.currentTimeMillis();

long stopTime = System.currentTimeMillis();
6. Revise the "main" method to report the time required to perform the sort, then generate timing data to fill in the following chart

	Sort
	n=1000
	n=10,000
	n=20,000
	n=100,000

	selection sort
	
	
	
	

	bubble sort
	
	
	
	

	mergesort
	
	
	
	

	quicksort
	
	
	
	

