CS 225

Lab 8: Heap class

3-13-13
Implement a Heap class in Java for data of type int. As discussed in our textbook, the
0-position of the corresponding array will go unused.
· Implement the Heap class as described below.

· Write JUnit testing code which executes every line of source code at least once.

· Submit your work by sending me a zipped folder (Heap.java and JUnit test code).

· Due by 5:00 PM, Tuesday 3-19-13.
1. Give the Heap class three data members:

int size;
// current heap size

int cap;
// capacity

int[] H;
// array for holding data – what length for H?

2. Write two constructors:

// constructor #1: makes an empty heap, with given capacity

// note: if given capacity is <= 0, creates a heap of capacity 10

public Heap(int c)

// constructor #2: heapifies given array A into a heap of capacity c

// by the bottom-up method given in our textbook

// note: if given capacity c is less than A.length, creates a heap
// of capacity A.length + 10

public Heap(int[] A, int c)

3. Write the following methods (use the standard algorithms):

public int getSize()

public int getCapacity()

public boolean isEmpty()

public boolean isFull()

// helper method for finding floor(log2(k))

// input: positive int k

// Note: height of heap = floor(log2(size)), and number of levels in

// heap = 1 + floor(log2(size))

// so this is helpful for printing the heap

public static int floorLog2(int k)

// returns a string for pretty-printing the heap, one level per line,

// with a space between consecutive values

// Example: if my heap values are (from top to bottom)

// 10, 6, 9, 5, 3, 8

// then the result of printing the return string will look like

// 10

// 6 9

// 5 3 8

public String toString()

// percolate down from position i (1 <= i <= size)

// moves a possibly-too-small element down in the heap to

// restore heap order (like after a delete max)

// precondition: i is a valid position number for this heap

private void percolateDown(int i)

// percolate up from position i (1 <= i <= size)

// moves a possibly-too-large element up in the heap to

// restore heap order (like after an insertion at the end)

// precondition: i is a valid position number for this heap

private void percolateUp(int i)

// insert

// input: val, an int to be added to the heap

// returns false and does nothing if heap is full

// returns true if insert is successful

public boolean insert(int val)

// returns the max value

// precondition: heap is not empty

// postcondition: heap is unchanged
public int getMax()

// returns -1 and does nothing if heap is empty

// otherwise, swaps H[1] with H[size], makes size 1 less,

// and percolates down from position 1

// returns the old max value

public int deleteMax()

// heapsort

// input: A[0..n-1], an integer array of positive length n

// output: returns H[0..n]; sorted array values are in H[1..n]

// postcondition: A is unchanged

public int[] heapsort(int[] A)

