CS 225
Lab 7: Binary Tree Algorithms

Due date: Tues 3-12-13, 5 PM
In this lab we create a binary tree class (for storing objects) and use divide-and-conquer algorithms to implement some familiar methods for the class.
Our first step toward the development of a binary tree implementation is to represent an entire subtree as a reference to its root node. The node will maintain a reference to user data and related nodes (the current node's parent, if any, and its two children) and directly provides methods to maintain a subtree rooted at that node.

Implementation notes:

· All empty trees will be represented by a single BinaryTree instance called BinaryTree.EMPTY. [If the empty tree were represented by a null reference, it would be impossible to apply class methods to the empty tree.] Note that if t1 and t2 are variables of type BinaryTree, and if both are empty trees, then t1 == t2 will return true, indicating that the two variables reference the exact same object.
· A non-empty binary tree is represented recursively; it stores a value (in a data field of type Object) for the root node, and has references (stored in data fields of type BinaryTree) to its left and right subtrees as well as its parent node. A node with no parent will store a null parent reference. A leaf node will have left == EMPTY and right == EMPTY.

· We cannot, of course, use == to compare two non-empty trees; we would have to write an equals method to make a logical comparison node-by-node.
What to do:

1. Start Eclipse to your workspace.

2. Make a package for lab7 and a class in that package called BinaryTree.
3. Go to our class vault website and copy the provided lab 7 source code; paste this code over the entire contents of BinaryTree.java and insert your own implementations as needed.
4. YOU DON'T NEED JUNIT TESTING FOR preorder, inorder, and postorder. Test the traversal methods by writing a main method to add some values to a tree and print the various traversals to the console.
5. Write JUnit testing code for the other methods of your BinaryTree class and fix any defects you find. Be sure to test enough special cases so that every line of BinaryTree.java, except the traversals, is executed at least once during testing.
6. Zip together BinaryTree.java, sample output from your main, and your JUnit test code; submit to me via email attachment.
1

