Theory of Computation

Lab #7: Using Java to Demonstrate Decidability, part 2
In this lab we add the following methods to our DFA class.

· private static String makePairString(String first, String second): Takes a pair of String objects and returns them as a single string in ordered-pair notation. For example, if the strings are "ab" and "cba", the return value will be "(ab,cba)".
· private DFA product(DFA other, boolean union): Returns a DFA which is the "product machine" of this and another DFA. The isFinal array of the product is set so that it computes either the union or the intersection (depending on the value of the boolean parameter).

· public DFA union(DFA other) : Returns a DFA recognizing the union of the language of this DFA and another DFA.
· public DFA intersect(DFA other) : Returns a DFA recognizing the intersection of the language of this DFA and another DFA.
· public DFA symmDiff(DFA other) : Returns a DFA recognizing the symmetric difference of the two languages, L(this) and L(other).
· public boolean equalLanguage(DFA other) : Demonstrates the decidability of
EQDFA = { <A, B> | A and B are DFAs with L(A) = L(B) }. Since the language is decidable using Java code, it is also decidable using a Turing machine algorithm.
1. Start Eclipse and open your DFA class.
2. Go to vault.hanover.edu/~wahl and open this document.
3. Create the private method makePairString which takes a pair of String objects and returns them as a single string in ordered-pair notation: copy the code below and insert it directly before your main method. Insert appropriate code between the braces to implement the method.

/**

 * Takes a pair of String objects and returns them as a single string

 * in ordered-pair notation. For example, if the strings are "ab" and

 * "cba", the return value will be "(ab,cba)".

 * @param first the first string of the pair

 * @param second the second string of the pair

 * @return an ordered-pair string representation of the two strings

 * @post the original strings are left unchanged

 */

private static String makePairString(String first, String second)

{

}
4. Create the private method product which can be used to find the union or intersection of two DFAs. Copy the code below and insert it directly before your main method.

/**

 * Returns a DFA which is the "product machine" of this and another

 * DFA. The isFinal array is set so the product computes either the

 * union or the intersection.

 * @param other the second DFA

 * @param union set to true if the union should be returned, otherwise

 * the intersection will be returned.

 * @return a pruned DFA whose set of states is the product of the

 * sets of states for the two given DFAs and whose start state, state

 * labels, and transition function are set accordingly.

 * @pre the two DFAs must use the same alphabet

 * @post the original DFAs remain unchanged

 */

private DFA product(DFA other, boolean union)

{

DFA prod;

// Calculate number of states in the product

int n = this.numStates * other.numStates;

// Create state names for the product

String[] name = new String[n];

for(int i=0; i<this.numStates; i++)

for(int j=0; j<other.numStates; j++)

{

int pos = i*other.numStates + j;

name[pos] = DFA.makePairString(
this.stateName(i),other.stateName(j));

}

// Find start state for the product

int newStart = this.start * other.numStates + other.start;

// Find start state name for the product

String newStartName = name[newStart];

// Create new transitions for the product

int m = alpha.size();

int[][] trans = new int[n][m];

for(int i=0; i<this.numStates; i++)

for(int j=0; j<other.numStates; j++)

{

int pos = i*other.numStates + j;

for(int l = 0; l<m; l++)

{

int a = this.transition[i][l];

int b = other.transition[j][l];

trans[pos][l] = a*other.numStates + b;

}

}

// create new isFinal array

boolean[] fin = new boolean[n];

for(int i=0; i<this.numStates; i++)

for(int j=0; j<other.numStates; j++)

{

int pos = i*other.numStates + j;

if(union && (this.isFinal[i] || other.isFinal[j]))

fin[pos]=true;

else if(!union && (this.isFinal[i] &&

other.isFinal[j]))

fin[pos]=true;

}

prod = new DFA(n, name, newStartName, alpha.toString(),
trans, fin);

prod.prune();

return prod;

}
5. Create the methods for union, intersect, and symmDiff which will allow us to union two DFAs, intersect two DFAs, and find the symmetric difference of two DFAs. Copy the following code and paste it into your DFA class, immediately before main. Write your own Java code between the brackets to implement the methods. Hint: union and intersect should be VERY short -- make a call to the product method in each case.

/**

 * Returns a DFA recognizing the union of the language of

 * this DFA and another DFA.

 * @param other the other DFA

 * @return a DFA for the union of the two languages

 * @pre the two DFAs must use the same alphabet

 * @post the original DFAs are unchanged.

 */

public DFA union(DFA other)

{

}

/**

 * Returns a DFA recognizing the intersection of the language of

 * this DFA and another DFA.

 * @param other the other DFA

 * @return a DFA for the intersection of the two languages

 * @pre the two DFAs must use the same alphabet

 * @post the original DFAs are unchanged.

 */

public DFA intersect(DFA other)

{

}

/**

 * Returns a DFA recognizing the symmetric difference of the

 * two languages, L(this) and L(other).

 * @param other the other DFA

 * @return a DFA for the symmetric difference of the languages.

 * @pre the two DFAs must use the same alphabet

 * @post the original DFAs are unchanged.

 */

public DFA symmDiff(DFA other)

{

}
6. Paste the following test code over your main method and run your DFA class. Carefully examine the output to see if the union, intersection, and symmetric difference methods are working correctly on this example.

// ** TEST METHOD **

public static void main(String[] args)

{

String[] L;

int[][] t;

boolean[] f;

// Create DFA evenZero which recognizes strings over {0,1} where

// the number of 0s is even

L = new String[2];

L[0] = "0even";

L[1] = "0odd";

t = new int[2][2];

t[0][0] = 1;

t[0][1] = 0;

t[1][0] = 0;

t[1][1] = 1;

f = new boolean[2];

f[0] = true;

DFA evenZero = new DFA(2,L,L[0],"01",t,f);

// Create DFA evenOne which recognizes strings over {0,1} where

// the number of 1s is even

L = new String[2];

L[0] = "1even";

L[1] = "1odd";

t = new int[2][2];

t[0][0] = 0;

t[0][1] = 1;

t[1][0] = 1;

t[1][1] = 0;

f = new boolean[2];

f[0] = true;

DFA evenOne = new DFA(2,L,L[0],"01",t,f);

System.out.println("Here is the DFA evenZero:");

evenZero.printDFA();

System.out.println("Here is the language of evenZero " +

"thru n = 4:");

evenZero.printLanguage(4);

System.out.println("Here is the DFA evenOne:");

evenOne.printDFA();

System.out.println("Here is the language of evenOne " +

"thru n = 4:");

evenOne.printLanguage(4);

// Testing for union

DFA union = evenZero.union(evenOne);

System.out.println("Here is the union of evenZero " +

"and evenOne:");

union.printDFA();

System.out.println("Here is the language of the union " +

"thru n = 4:");

union.printLanguage(4);

// Testing for intersection

DFA intsecn = evenZero.intersect(evenOne);

System.out.println("Here is the intersection of evenZero " +

"and evenOne:");

intsecn.printDFA();

System.out.println("Here is the language of the " +

"intersection thru n = 4:");

intsecn.printLanguage(4);

// Testing for symmetric difference

DFA symmdiff = evenZero.symmDiff(evenOne);

System.out.println("Here is the symmetric difference " +

"of evenZero and evenOne:");

symmdiff.printDFA();

System.out.println("Here is the language of the symmetric " +

"difference thru n = 5:");

symmdiff.printLanguage(5);

}

}
7. Create a new method, equalLanguage, which tests whether two DFAs have the same language. Copy the following code and paste it into your DFA class, immediately before main(). Write your own Java code between the brackets to implement the method.

/**

 * Tests whether the language of this DFA is the same as the

 * language of another DFA.

 * @param other another DFA

 * @return true iff this DFA and the other DFA recognize the same

 * language.

 */

public boolean equalLanguage(DFA other)

{

}

8. Add this test code at the bottom of main() and run to test the equal languages method. Carefully examine the output to see if the equal language method is working correctly on these examples.

// Testing for equal languages

System.out.println("Is L(evenZero) = L(evenOne)? ");

System.out.println(evenZero.equalLanguage(evenOne));

System.out.println("Is L(evenZero) = L(evenZero)? ");

System.out.println(evenZero.equalLanguage(evenZero));

// Make a different DFA for recognizing even ones

L = new String[4];

L[0] = "0mod4";

L[1] = "1mod4";

L[2] = "2mod4";

L[3] = "3mod4";

t = new int[4][2];

t[0][0] = 0;

t[0][1] = 1;

t[1][0] = 1;

t[1][1] = 2;

t[2][0] = 2;

t[2][1] = 3;

t[3][0] = 3;

t[3][1] = 0;

f = new boolean[4];

f[0] = true;

f[2] = true;

DFA evenOneChanged = new DFA(4,L,L[0],"01",t,f);

System.out.println("Here is the language of " +

"evenOneChanged (even ones):");

evenOneChanged.printLanguage(4);

System.out.println("Is L(evenOne) = L(evenOneChanged)? ");

System.out.println(evenOne.equalLanguage(evenOneChanged));
9. Generate updated Javadoc for your finiteAutomata package. Look at DFA.html and verify the new methods are now documented.

10. Copy the console output to a text document, print, and save. You are finished when the new methods have been implemented and seem to be working correctly, and you've updated the Javadoc.
WHAT TO TURN IN (write your name on each item):

· Electronic copy of DFA.java
· Electronic copy of DFA.html
· Printed copy of your output (or email if it's very long)
· Due by Wednesday 4-9-08
