Theory of Computation

Lab #7: Implementing an NFA class, part 2
In this lab, we accomplish most of the work necessary for implementing the convertToDFA() method, which takes "this" NFA and constructs an equivalent DFA. The equivalent DFA is central to the operation of the NFA class, since all computations on the NFA will be simulated using the DFA.
Let N = (Q, S, d, q0, F) be the NFA in question. In our implementation, Q = {0,1,2,..., numStates - 1}, S is any alphabet of input symbols, d consists of both symbol-consuming and epsilon transitions (stored in separate boolean arrays), q0 = 0, and F is the set of final states (represented by a boolean array).
Recall the following elements of the construction of D, a DFA equivalent to N (Sipser, p.55):
1. The input alphabet S remains unchanged.

2. The set of states
[image: image1.wmf]Q

¢

 in D is the power set of Q; if N has n states, D has 2n states. Each state in D is naturally associated with an IntSet of non-negative integers, and the toString() version of the IntSet will be used as the state label. However, our implementation of the DFA class requires the states of the DFA to be associated with the integers 0, 1, 2, ..., numStates - 1. Happily, this will not be a problem; the subsets of {0, 1, 2, ..., n-1} are in one-to-one correspondence with the integers from 0 through 2n - 1 (see IntSet methods "intValue" and "setValue", which implement the two directions of this bijection). For example, if N has 3 states then D has the following 8 states, with intValues as shown:

[] ~ 0; [0] ~ 1; [1] ~ 2; [0,1] ~ 3; [2] ~ 4; [0,2] ~ 5; [1,2] ~ 6; [0,1,2] ~ 7
3. The transition function
[image: image2.wmf]d

¢

 in D works as follows. Take the IntSet representation of any state q in
[image: image3.wmf]Q

¢

. Take any input symbol a in S. The transition from q, on reading a, is
[image: image4.wmf]d

¢

(q,a) = E(R(q,a)): first transform q by applying transitions which consume symbol a (to get the set R(q,a)); then expand that result by applying any available epsilon transitions. This is illustrated in Sipser, Example 1.41, p.57.
4. To find the start state in D, calculate the IntSet E(0) of all states reachable from state 0 in N via zero or more epsilon transitions. The integer E(0).intValue() will be the number of the start state in D.
5. Which states in D are final? Take the IntSet representation of any state q in
[image: image5.wmf]Q

¢

. If that IntSet contains at least one of N's final states, then q is a final state in D. For example, if N has 3 states as in item 2 above, and if the final states in N are F = {1}, then the final states in D will be F ' = {2, 3, 6, 7} since '1' appears in the four corresponding IntSets ([1]~2, [0,1]~3, [1,2]~6, [0,1,2]~7).
6. Once D has been constructed in the DFA class, it should be pruned to remove extraneous states. (Recall, we have already implemented the "prune" method in the DFA class.)
In this lab, we will implement the following NFA methods to support the convertToDFA() method:

· reachable(int s, char c): returns set of all states which are reachable from the given state on consuming the given input symbol
· reachable(IntSet set, char c): returns set of all states which are reachable from at least one state in the given set on consuming the given input symbol

· getE(): returns the "E" array for this NFA, where E[i] is the set of all states reachable from state i in zero or more epsilon transitions
· getE(IntSet set): returns set of all states which are reachable from at least one state in the given set via zero or more epsilon transitions

· dfaSetTransitions(): returns an array of DFA transitions for an equivalent DFA
· dfaSetFinal(): returns an array of boolean values for "isFinal" array of an equivalent DFA
· main(String[] args): test method
WHAT TO DO:
1. Start Eclipse and open NFA.java.

2. From our course website (http://vault.hanover.edu/~wahl/TOCwin2008.htm), follow the link to Lab 7 documents.

3. Copy the entire contents of the source code file NFA, part 2; paste it over the main method in your NFA class. Save.
4. Generate updated Javadoc documentation for your finiteAutomata project.
5. Skim through the newly-inserted code and the associated Javadoc (NFA.html) to familiarize yourself with the methods to be implemented. Ask questions as needed about any items you don’t understand.

6. Replace all occurrences of “// ???” with appropriate code.

7. When all the syntax errors have been resolved, run your NFA class as a Java application. Verify that your methods seem to be working correctly.

8. You are finished with this lab when the Lab 7 methods have been implemented according to the given specifications, the test code in the main method runs correctly, and you have successfully updated the Javadoc documentation for your project.
WHAT TO TURN IN (write your name on each item):

· Printed copy of NFA.java
· Printed copy of the resulting output
· Electronic copy of NFA.html (email, CD, or flash memory)
· Electronic copy of NFA.java (email, CD, or flash memory)

· Due by ______________________

_1259474959.unknown

_1259474990.unknown

_1259474836.unknown

