Theory of Computation

Lab #6: Using Java to Demonstrate Decidability, part 1
In this lab we add three new methods to our DFA class.

· public boolean langIsEmpty(): Demonstrates the decidability of
EDFA = { <A> | A is a DFA with L(A) =
[image: image1.wmf]f

 }. Since the language is decidable using Java code, it is also decidable using a Turing machine algorithm (see Church-Turing Thesis).
· public DFA(DFA old): A copy constructor for cloning a DFA. We need it for langIsEmpty and future methods.
· public DFA comp(): Returns a DFA recognizing the complement of L(this). We need it for future methods.
1. Start Eclipse.
2. Go to vault.hanover.edu/~wahl and open this document.
3. Create a copy constructor for the DFA class by pasting the following code into your DFA class (insert it after the two constructors we already have). Write your own Java code between the brackets to implement a deep copy method. Hint: Copy the code for the six-parameter constructor and modify it for this new purpose.

/**

 * Copy constructor.

 * @param old the DFA to be copied.

 * @return a new DFA which is an independent copy of the old

 * DFA.

 * @post old DFA is unchanged.

 */

public DFA(DFA old)

{

}
4. Run the following test code in main() -- paste it over the current contents of main() -- to verify the operation of your copy constructor.

// Create DFA d1 which recognizes strings over {0,1} where

// the number of 1s is congruent to 1 (mod 3). d1 has

// an inaccessible state q4.

String[] L = new String[4];

L[0] = "q1";

L[1] = "q2";

L[2] = "q3";

L[3] = "q4";

int[][] t = new int[4][2];

t[0][0] = 0;

t[0][1] = 1;

t[1][0] = 1;

t[1][1] = 2;

t[2][0] = 2;

t[2][1] = 0;

t[3][0] = 1;

t[3][1] = 3;

boolean[] f = new boolean[4];

f[1] = true;

f[3] = true;

DFA d1 = new DFA(4,L,L[0],"01",t,f);

System.out.println("Here is DFA d1:");

d1.printDFA();

DFA d2 = new DFA(d1); // clone of d1

System.out.println("Here is DFA d2, clone of d1:");

d2.printDFA();

// prune d2 and print again

d2.prune();

System.out.println("d2 after pruning:");

d2.printDFA();

// verify that d1 is unchanged

System.out.println("d1 after d2 was pruned (unchanged):");

d1.printDFA();
5. Create a new method, langIsEmpty, which returns true when the current DFA recognizes the empty language (i.e., rejects every string). Copy the following code and paste it into your DFA class, immediately before main(). Write your own Java code between the brackets to implement the method. Hint: begin by making a clone of this DFA so that this DFA will not be changed by the method.

/**

 * Tests whether the language of this DFA is empty.

 * @return true iff this DFA accepts no strings

 * @post this DFA is unchanged.

 */

public boolean langIsEmpty()

{

}
6. Add this test code at the bottom of main() and run to test the langIsEmpty method.

// Try langIsEmpty on d2 (should be false!)

System.out.println("Is L(d2) = empty? " + d2.langIsEmpty());

// Create a DFA for the empty language (no accessible final

states) -- recycle d1 for this purpose

f[1] = false; // now q2 is not final

f[3] = true; // q4 is final, but inaccessible

DFA d3 = new DFA(4,L,L[0],"01",t,f);

// print d3

System.out.println("\nHere is DFA d3:");

d3.printDFA();

// Try langIsEmpty on d3 (should be true!)

System.out.println("Is L(d3) = empty? " + d3.langIsEmpty());
7. Create a new method, comp, which returns a new DFA recognizing the complement of L(this). Copy the following code and paste it into your DFA class, immediately before main(). Write your own Java code between the brackets to implement the method. Hint: Again, begin by making a clone of this DFA so that this DFA will not be changed by the method.

/**

 * Returns a DFA recognizing the complement of the language of

 * this DFA.

 * @return DFA for the complement of L(this).

 * @post this DFA is unchanged.

 */

public DFA comp()

{

}
8. Add this test code at the bottom of main() and run to test the comp method.

DFA comp1 = d1.comp(); // complement of d1

DFA comp3 = d3.comp(); // complement of d3

System.out.println("\nHere is the language of d1 " +

"(thru length 2):");

d1.printLanguage(2);

System.out.println("\nHere is the language of d1.comp() " +

"(thru length 2):");

comp1.printLanguage(2);

System.out.println("\nHere is the language of d3 " +

"(thru length 2):");

d3.printLanguage(2);

System.out.println("\nHere is the language of d3.comp() " +

"(thru length 2):");

comp3.printLanguage(2);

9. Generate updated Javadoc for your finiteAutomata package. Look at DFA.html and verify the three new methods are now documented.

10. Copy the console output to a text document, print, and save. You are finished when your three new methods have been implemented and seem to be working correctly, and you've updated the Javadoc.
WHAT TO TURN IN (write your name on each item):

· Electronic copy of DFA.java
· Electronic copy of DFA.html
· Printed copy of your output
· Due by Wednesday 4-2-08
_1267530778.unknown

