GUI
Lab #6: The Comparable Interface

Due Friday 2-13-09

Lab 6 will demonstrate how to “implement” the Comparable interface and write generic max and min methods for finding the maximum or minimum of two Comparable objects. We will extend our Rectangle class from Lab 1 to make a class of comparable rectangle objects.

WHAT TO DO:

1. Create a new class called Max within the gui package.

2. Add code to your Max class to create a generic static method called max, which has two parameters of type Comparable and returns a result of type Comparable (the maximum of the two inputs).
3. Objects in the String class are Comparable. Write a main method in Max to show that your max method works on Strings. Print an informative message to the console window for three different examples: one where the first argument is greater, one where the second argument is greater, and one where the two arguments are equal.
4. Objects in the Double class are Comparable. In main, also create Double objects for the values 1.5 and 2.3. Print an informative message to the console window showing the result of calling max on these two Double objects.

5. Add code to your Max class to create a generic static method called min, which works like max but returns the minimum of two comparable inputs.
6. Create a new class called CompRect inside the gui package. CompRect extends Rectangle and implements Comparable.

7. For each constructor in the Rectangle class, write a corresponding constructor in the CompRect class, using keyword super to call the appropriate Rectangle constructor.

8. Give CompRect an equals method which overrides the default from the Object class (takes a parameter of type Object, returns a boolean).
a. CompRect objects are equal iff they are congruent rectangles.
b. Notice that r1 could have width = 1.2 and height = 3.5, and r2 could have width = 3.5 and height = 1.2; in this case the call r1.equals(r2) should return true.

9. It is best practice to write the compareTo method (required by any class which implements the Comparable interface) so that r1.compareTo(r2) == 0 if and only if r1.equals(r2) is true. For CompRect objects, if r1’s larger dimension is greater than r2’s larger dimension, then r1 is greater than r2. If r1’s larger dimension is equal to r2’s larger dimension, then base the comparison on the two rectangles' smaller dimensions. If the two rectangles are congruent, return 0 (to indicate equal rectangles).
a. Use this ordering of rectangles to implement the compareTo method for CompRect. It should take one parameter of type Object, and return an int.

b. Note: To determine the larger and smaller dimensions of each rectangle, use the methods Max.max and Max.min. They return objects of type Comparable, on which you can use "equals" and "compareTo".
10. Write a test program (in the main method of the Rectangle class) that creates four CompRect objects, as follows:

· Declare an array: CompRect[] r = new CompRect[4];
· Create r[0] using the no-arg constructor (default dimensions).

· Create r[1] with the two-arg constructor, specifying width = 3.5 and height = 35.9.

· Create r[2] with the two-arg constructor, specifying width = 35.9 and height = 3.5.

· Create r[3] with the two-arg constructor, specifying width = 10.7 and height = 35.9.

· Write a double for-loop to compare each rectangle with each other rectangle using equals and compareTo. Display the results in the console window, printing a blank line each time through the inner for loop to help with readability.

11. Turn in the following to get credit for this lab (due 2-13-09):

· printout of your console output for both Max and CompRect.

· all your source code for Lab 6, emailed to Dr. Wahl as text file attachments
