Theory of Computation

Lab #6: Implementing an NFA class, part 1
The mathematical description of a nondeterministic finite automaton (NFA) has five components:

· a non-empty, finite set of states Q
· an alphabet S
· a transition function d which maps Q × (
[image: image1.wmf]}

{

e

È

S

) to P(Q)
· a unique "start" state (element of Q)

· a set of zero or more "final" states (subset of Q)

Obviously, the difference between a DFA and an NFA is in the transition function. Each state in a DFA has exactly one exiting transition arrow for each alphabet symbol. In an NFA, a state can have zero, one, or multiple exiting transition arrows for a single alphabet symbol. Also, an NFA may include epsilon transitions (which are not allowed in a DFA).

Recall that the language L which is accepted (or recognized) by the NFA is the set of all strings in S* for which there exists at least one computational branch ending in an accept state. (We can think of a nondeterministic computation as a tree of possibilities; only one of these possibilities has to lead to an accept state in order for the input string to be included in the NFA's language.) Though NFAs seem quite different from DFAs, it is a fact that they have no additional expressive power: every NFA has an equivalent DFA, that is, a DFA which accepts the same language.

In our implementation, the NFA states are labeled 0, 1, 2, etc., where state 0 is always the start state. (In contrast with the DFA implementation, there are no labels for naming the states.) There are data fields "numStates" for recording the number of states in the NFA and "alpha" for storing the NFA's alphabet of input symbols. Final states are indicated with a boolean array, "isFinal".
In an NFA with n states and m alphabet symbols, there are n × m possible inputs to the transition function (not counting epsilon transitions). An output from the transition function must specify a list of zero or more destination states; we will represent this output with a 1-dimensional boolean array where "true" values indicate valid transitions. Thus, each NFA has a 3-dimensional boolean "transition" array: for each possible "from" state i, for each possible "to" state j, for the kth alphabet symbol, transition[i][j][k] is "true" iff we can transition from state i to state j on reading the kth alphabet symbol.
Epsilon transitions are recorded in a separate boolean array: epsilon[i][j] is true iff we can transition from state i to state j on epsilon.

Each NFA object also has an equivalent DFA "D" whose states are a subset of the power set of {0,1,2,...,numStates-1}. Computations on the NFA are simulated by the corresponding computations on the equivalent DFA.
In this lab, we begin the implementation of an NFA class in Java. The NFA methods to be implemented are as follows:
· NFA(int n, String a, boolean[][][] t, boolean[][] e, boolean[] f): constructor. Note: Initializing the equivalent DFA is the most complicated element of implementing the NFA class. For now, we will leave that part of the constructor inoperative.
· numStates(): returns the number of states
· validState(int i): returns true if the given integer is in the correct range to be a state in this NFA

· alpha(): returns a copy of the alphabet

· getFinalSet(): returns the set of final states
· printFinal(): prints the list of final states in this NFA
· printTransitions(): prints all the transitions (both symbol-consuming and epsilon transitions) in the form "(i,x) -> j"

· printNFA(): pretty-prints this NFA's specifications
· main(String[] args): test method
WHAT TO DO:

1. Start Eclipse.
2. Create a new class called "NFA" inside the finiteAutomata package.
3. From our course website (http://vault.hanover.edu/~wahl/TOCwin2008.htm), follow the link to Lab 6 documents. Copy the contents of the source code file NFA, part 1 and paste it over the contents of your NFA class back in Eclipse. Save.
4. Generate updated Javadoc documentation for your finiteAutomata package.
5. Skim through NFA.java and NFA.html to learn about the proposed implementation. Ask questions as needed about any items you don’t understand.

6. In NFA.java, replace all occurrences of “// ???” with Java code to finish the initial implementation.
7. When all the syntax errors have been resolved, run your NFA class as a Java application. Verify that your methods seem to be working correctly.

8. You are finished with this lab when all the NFA, part 1 methods have been implemented according to the given specifications, your test code in the main method runs correctly, and you have successfully updated the Javadoc documentation for your project.
WHAT TO TURN IN (write your name on each item):

· Printed copy of NFA.java
· Printed copy of your output
· Electronic copy of NFA.html (email, CD, or flash memory)

· Electronic copy of NFA.java (email, CD, or flash memory)

· Due by ______________________
_1259051392.unknown

