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Name:  _________________

Lab 6:  Introduction to Derivatives (3.1)

10-25-06

Due Monday 10-30-06

Suppose f is a function of x.  The derivative 
[image: image1.wmf])

(

'

a

f

 is the instantaneous rate of change of y = f (x) with respect to x when x = a.  A derivative is like a “speedometer” for y:  how fast is y changing as x changes?  The sign (positive or negative) of the derivative tells us whether y is increasing or decreasing, just as a positive slope tells us a linear function is increasing and a negative slope tells us a linear function is decreasing.  (Imagine your car has a speedometer which gives a negative reading if you’re driving in reverse!)

Graphically, we can interpret 
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 as the slope of the tangent line to the graph of f at the point P (a, f (a) ).  As we saw in chapter 2, tangent line slopes can be found as the limits of secant line slopes.  A secant line goes through the original point P and also a second point Q on the graph of f.  Depending on how we label the x coordinate of Q, we have two different ways to calculate 
[image: image3.wmf])

(

'

a

f

 as a limit.

Approach 1 (most popular):  GiveQ the coordinates (a + h, f (a + h) ).  Then the limit of the slope of the secant line PQ as Q approaches P(a, f (a) ) is the derivative of f at a:
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Approach 2 (alternative form):  Give Q the coordinates (x, f (x) ).  Then the limit of the slope of the secant line PQ as Q approaches P(a, f (a) ) is the derivative of f at a:
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PROBLEM #1 (using approach 1):  Suppose a = 3 and h = 2.  Show the points P (a, f (a)) and Q (a + h, f (a + h) ) on the graph below.  Show “a” and “a + h” on the x axis.  Show the distance “h” in an appropriate place.  Show “f (a)” and “f (a + h)” on the y axis.  Draw the secant line PQ.  Draw the tangent line to f at P (a, f (a) ).  Label the tangent line with the equation “mtan = 
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PROBLEM #2 (using approach 2):  Suppose a = 3 and x = 5.  Show the points P (a, f (a)) and Q (x, f (x) ) on the graph below.  Show “a” and “x” on the x axis.  Show the distance 
“x - a” in an appropriate place.  Show “f (a)” and “f (x)” on the y axis.  Draw the secant line PQ.  Draw the tangent line to f at P (a, f (a) ).  Label the tangent line with the equation “mtan = 
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To find 
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 exactly, for a specific function f, we try to use the algebraic methods we learned in section 2.3.  

Example #1:  f (x) = 
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 at P (3, -9).  This is the graph shown in problems 1 and 2.  

Approach 1:  Q is 
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  The secant line slope is mPQ = 
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.  To find the limit as h approaches zero, simplify with algebra and then substitute h = 0:
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[image: image15.wmf]
Verify the limit with Maple:  
> f:=x->x^3-4*x^2;
> limit((f(3+h)-f(3))/h,h=0);
Approach 2:  Q is 
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  The secant line slope is mPQ = 
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.  To find the limit as x approaches three, simplify with algebra and then substitute x = 3.  You might need long division of polynomials to factor the numerator:
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Verify the limit with Maple:  
> limit((f(x)-f(3))/(x-3),x=3);
So, with either version, the tangent line slope is 
[image: image20.wmf].
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  Recall, the line is tangent to f at P (3, -9).  Using the point-slope formula, define and plot the tangent line together with f on [0, 5]:
> tanline:=x->3*(x-3)-9;
> plot({f,tanline},0..5);
PROBLEM #3:  Consider f (x) = 
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 at P (1, 2).  

Approach 1:  Q is 
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  The secant line slope is mPQ = 
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(a)  To find the limit as h approaches zero, simplify with algebra and then substitute h = 0 (show work below):
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(b)  Verify the limit with Maple (see Example 1).

Approach 2:  Q is 
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  The secant line slope is mPQ = 
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(c)  To find the limit as x approaches one, simplify with algebra and then substitute x = 1 (show work below):

(d)  Verify the limit with Maple (see Example 1).

(e)  The tangent line slope at x = 1 is 
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_________ .  The tangent line equation at 
x = 1 is y = ____________________ 
(f)  Using Maple, define and plot the tangent line together with f on [-3, 5].

PROBLEM #4:  Consider f (x) = 
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 at P (-4, 1).  

Approach 1:  Q is 
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  The secant line slope is mPQ = 
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(a)  To find the limit as h approaches zero, simplify with algebra and then substitute h = 0 (show work below):
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(b)  Verify the limit with Maple (see Example 1).

Approach 2:  Q is 
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  The secant line slope is mPQ = 
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(c)  To find the limit as x approaches -4, simplify with algebra and then substitute x = -4 (show work below):

(d)  Verify the limit with Maple (see Example 1).

(e)  The tangent line slope at x = -4 is 
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_________ .  The tangent line equation at 
x = -4 is y = ____________________ 
(f)  Using Maple, define and plot the tangent line together with f on [-8, 0].
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