CS 225 -- Algorithms
Lab 5: Mergesort

Due Weds 2-9-11
1. Give the StringSort class a static data field for counting comparisons, and two related methods, as follows (insert these lines at top of StringSort class definition):

// static data field for counting comparisons

private static int comparisonCount = 0;

// accessor for comparisonCount

public static int getComparisonCount()

{

return comparisonCount;

}

// reset method for comparisonCount

public static void resetComparisonCount()

{

comparisonCount = 0;

}
2. Refer to the algorithms for Mergesort and Merge as given in your textbook (p.126). Implement these algorithms in Java by adding two static methods to your StringSort class as follows (use the comments and method declarations as shown below):
/* This method uses the classic mergesort algorithm to sort an array

 * of strings.

 * Input: An array A of non-null String objects

 * Output: The array is sorted into non-decreasing order

 * Note: This is a mutator method; the array A is modified.

 */

public static void mergeSort(String[] A)

/* This is a helper method for mergeSort. It takes two
 * sorted arrays of strings and merges them into a single array.
 * Input: Two sorted arrays of non-null String objects,
 * B and C, and a string array A long enough to
 * hold the result of merging B & C.

 * Output: String array A. The elements of B and C are copied into

 * A to form a single sorted array of strings.

 * Note: Arrays B and C are not modified by the method.
 */

public static void merge(String[] B, String[] C, String[] A)
3. Insert code in the merge method which increments the comparison counter and prints an informative message to the screen each time a comparison is made. Insert these two lines at the top of the while loop in merge:

comparisonCount++;

System.out.println("comparing B[" +i+ "] and C[" +j+ "]");
4. In StringSort.main, change your code to use mergeSort instead of bubbleSort or SelectionSort. Reset the comparison counter to 0 before calling mergeSort. After mergeSort finishes and you've printed the sorted array, you should also report the number of comparisons:

System.out.println("# comparisons made = " +

 StringSort.getComparisonCount());

5. Run mergeSort on an array of length 8 or more. Fix any problems you find.

6. Run mergesort on an array of four strings which represent worst case input, that is, requiring
n*log2(n) - n + 1 comparisons (see analysis for mergesort efficiency on p.127). Your input should require 4*log2 (4) - 4 + 1 = 5 comparisons.
7. Modify your example in #6 to find a list of 8 strings which represents worst case input for mergeSort (8 log28 - 8 + 1 = 17 comparisons). For easy typing, you can work with different orderings of the digits from 1 through 8. Show me your output before moving on.
8. Insert code in the methods selectionSort and bubbleSort to increment the comparison counter and print an informative message to the screen each time a comparison is made. For example:

 comparisonCount++;

System.out.println("comparing positions " +i+ " and " +j);
or whatever is appropriate to that method.
9. Run all three sorts on this list of strings as input (n=8, reverse order input): 8, 7, 6, 5, 4, 3, 2, 1. There should be n(n-1)/2 = 8*7/2 = 28 comparisons for sorting this list using either selection sort or bubble sort. Verify that this is true and that all three sorts work correctly on this input.
10. Run all three sorting methods on the following list of strings and copy the results to a textfile named lab 6 output.txt:

(using n=9) zebra monkey deer whale snake spider cat dog ant
On this input, how many comparisons are made by selection sort? ________
By bubble sort? _______ By mergesort? ________
11. Bubble sort and selection sort always make (n)(n-1)/2 comparisons. What is the big-theta class for these sorts? _____________ For worst-case input, mergesort makes n*log2(n) - n + 1 comparisons. What is the worst-case big-theta class for mergesort? _____________

Lab 5 is due 2-9-11, by 1 pm. Please email me your source code (StringSort.java) and your output listing from #10 (lab 6 output.txt) as file attachments.

