GUI
Lab 5: Inheritance and Polymorphism

1-26-2011
Due: Monday 1-31-11

In this lab we demonstrate some of the Java features covered in the chapter on Inheritance and Polymorphism: inheritance, keyword "extends", keyword "super", constructor chaining, constructor overloading, method overriding, polymorphism (dynamic binding), and operator "instanceof".

1. Start Eclipse and create a new class in the gui package, called "Critter".
2. In Java, if a data field or method declaration does not explicitly give an access modifier (public, protected, or private), it will have default accessibility. This means it can be accessed by any members of the same package.
3. In the Critter class, declare the following data fields with default accessibility:

a. name : String
// the critter's name
b. numLegs : int

// how many legs it has
c. hasFur : boolean

// does it have fur?
d. canFly: boolean

// can it fly?
4. Write a 4-arg Critter constructor which initializes all four data fields, using exactly the following declaration:

public Critter(String name, int numLegs, boolean hasFur, boolean canFly)
5. Because String objects are immutable, the initialization this.name = name does not compromise data encapsulation -- even though the calling program may have a reference to the object now referenced by this.name, the calling program can't change that String object. If a data field is initialized using a mutable object, care should be taken to protect encapsulation by cloning the object before initializing.
6. Write a 1-arg Critter constructor (for setting the critter's name); the other fields default to 0 legs, no fur, can't fly. Use keyword "this" in the first line of the constructor body (to call the 4-arg constructor of the same class).
7. Use the source menu to automatically generate getters and setters for the Critter class, including comments.
8. Create the following main method and execute:

public static void main(String[] args)
{

Critter[] c = new Critter[4]; // Critter array

c[0] = new Critter("dog",4,true,false);

c[1] = new Critter("DOG",3,true,false); // 3-legged dog

c[2] = new Critter("bat");

c[2].setCanFly(true); // bats can fly

c[2].setHasFur(true); // bats have fur

c[2].setNumLegs(2); // bats have 2 legs

c[3] = new Critter("trout");

// print a report on the critters

for(int i=0; i<4; i++)

 System.out.println(c[i]);

}
9. Look at your output from running Critter in step 8. Recall that println automatically invokes toString on any non-String objects it is asked to print. We have not yet written a toString method for the Critter class. Which class's toString method was invoked when you ran your Critter code? _____________
10. Write a toString method in the Critter class to override the toString method in the Object class. Your Critter.toString method should produce attractive and informative messages. For example, c[0].toString() should return the following string:
 "This critter is a dog, has 4 legs, has fur, and cannot fly."
Run your Critter class to verify that Critter.toString is working correctly.

11. Write a boolean equals method in the Critter class, to override the equals method in the Object class. The parameter type has to be "Object" to match the signature of the method we are overriding. Implement the equals method so that two Critters are equal if they have the same name, ignoring case; if one critter's name is "Penguin" and the other is "penGuin", they should be declared equal by the equals method, no matter what values are in the other data fields for the two instances.
12. Write a private method noFur (no parameters, return type void) in the Critter class; the noFur method sets this.hasFur to false.
13. Add code at the end of the existing main to do the following:

a. Report whether c[0] and c[1] are equal (using equals).

b. Report whether c[0] and c[2] are equal (using equals).

c. Report whether c[3] can fly (using the getter method).

d. Remove the fur from c[1], using noFur.

e. Make c[3] able to fly (using the setter).

f. Report all values of all critters (copy and paste the previous for loop).
14. After verifying the correctness of your output from #13, create a new class in the gui package called "Mammal". Make Mammal a subclass of Critter (use the keyword extends).
15. Write a 4-arg constructor for the Mammal class which takes a parameter for each data field in the Critter class. Implement this constructor with a single statement using keyword super to invoke the Critter constructor.
16. Write a 1-arg constructor for the Mammal class (takes a String parameter to set the name field). The other fields default to 4 legs, has fur, can't fly. Implement this constructor with a single statement using keyword super to invoke the Critter constructor.
17. Give Mammal the following main method, and execute:
public static void main(String[] args)
{

Mammal m1 = new Mammal("cat");

System.out.println(m1);

Mammal m2 = new Mammal("furlessMonkey",4,false,false);

System.out.println(m2);

m1.setCanFly(true); // make the cat fly

m2.setHasFur(true); // give the monkey fur

System.out.println("Mammal m1 info:" + m1); // report

System.out.println("Mammal m2 info:" + m2);

}
18. Even though we didn't define any methods in the Mammal class (except constructors), the accessible methods are inherited from the superclass Critter. [Notice the private noFur method is not accessible from Mammal.] Of course, any methods Critter inherited from its superclass, Object, are also passed down to Mammal.
19. If we want to change how any of these inherited methods are implemented, we can override them in the subclass. In Mammal, override the toString method inherited from Critter so it reports that the object is a Mammal rather than a Critter. Execute Mammal to verify the change.
20. Write a method crossBreed in the Critter class, represented in UML as follows:

+ crossBreed(other : Critter) : Critter
Crossbreed returns a new Critter which is a mixture of "this" and "other".
· If both "this" and "other" are Mammals, then the crossBreed will also be a Mammal. (Use the operator instanceof to determine if return object should be a Mammal.)

· The new name is a concatenation of the original names.
· The new number of legs is this.numLegs.
· If either "this" or "other" has fur, then the crossBreed will also have fur.
· If both "this" and "other" can fly, then the crossBreed can also fly.
21. Add code to the main method in Mammal to demonstrate your crossBreed method on five different combinations. Include at least one combination which results in a Mammal and another combination which doesn't. Print the results of your crossbreeding experiments to the console window.

Turn in the following to get credit for this lab (due 1-31-11):

· printout of your nicely-labelled console output (final runs of Critter and Mammal)
· by email, source code for Critter and Mammal (put each in an attached text file)

4

