GUI
Lab 5: Inheritance and Polymorphism

1-26-09

In this lab we demonstrate some of the Java features we've learned about in Chapter 9: Inheritance, keyword "extends", keyword "super", constructor chaining, constructor overloading, method overriding, polymorphism (dynamic binding), and operator "instanceof".
1. Start Eclipse and create a new class in the gui package, called "Critter".

2. A Critter object has the following data fields, with access = (default):

a. name : String
b. numLegs : int
c. hasFur : boolean
d. canFly: boolean
3. Write a 4-arg Critter constructor, which initializes all the data fields, using the following declaration:

public Critter(String name, int numLegs, boolean hasFur, boolean canFly)
Note: Initialize this.name using keyword new (uses a new String object for this.name to protect encapsulation).

4. Write a 1-arg Critter constructor (for setting the critter's name); the other fields default to zero legs, no fur, can't fly. Use keyword "this" in the first line of the constructor body (to call the 4-arg constructor of the same class).
5. Use the source menu to automatically generate getters and setters for the Critter class.
6. Modify the code in setName so that a new String object is created and returned (this protects encapsulation).
7. Insert the following main method and execute:

public static void main(String[] args) {

Critter[] c = new Critter[4]; // Critter array

c[0] = new Critter("dog",4,true,false); // a 4-legged dog

c[1] = new Critter("DOG",3,true,false); // a 3-legged DOG

c[2] = new Critter("bat",2,true,true);

c[3] = new Critter("cardinal",2,false,true);

// report on the critters

for(int i=0; i<4; i++)

System.out.println(c[i]);
}
8. Recall that println calls toString on any objects it is asked to print. We have not yet written a toString method for the Critter class. Which class's toString method was invoked when you ran your Critter code?

9. Write a toString method in the Critter class to override the toString method in the Object class. (Hint for easy implementation: Try using String concatenation instead of a StringBuffer.) Your toString method should produce an informative and well-labeled message stating that the object is a Critter, and telling the values of its data fields. For example, the following two lines of code should produce the indicated output:
Critter b = new Critter("bat",2,true,true);

System.out.println(b);

This is a Critter: name = bat, numLegs = 2, hasFur = true, canFly = true

10. Run your Critter class to verify toString is working correctly.

11. Write a boolean equals method in the Critter class, to override the equals method in the Object class. The parameter type has to be "Object" to match the original method's signature. Implement the equals method so that two Critters are equal if they have the same name, ignoring case; if one critter's name is "Penguin" and the other is "penGuin", they should be declared equal by the equals method.

12. Write a private method noFur (no parameters, return type void) in the Critter class; the noFur method sets this.hasFur to false.

13. Add code in main to do the following:

a. Report whether c0 and c1 are equal (using equals).

b. Report whether c0 and c2 are equal (using equals).

c. Report whether c3 can fly (using the getter method).

d. Take the fur from c1 (using noFur).

e. Make c3 unable to fly (using the setter method).

f. Report all values of all critters (copy and paste the existing for loop).

14. Create another new class in the gui package, called "Mammal". Make Mammal a subclass of Critter (use the keyword extends).
15. Write a 4-arg constructor for the Mammal class, which takes a parameter for each data field in the Critter class.

16. Write a 1-arg constructor for the Mammal class (takes a String parameter to set the name field). The other fields default to 4 legs, has fur, can't fly.

17. Give Mammal the following main method, and execute:

public static void main(String[] args) {

Mammal m1 = new Mammal("cat");

System.out.println(m1);

Mammal m2 = new Mammal("furlessMonkey",4,false,false);

System.out.println(m2);

m1.setCanFly(true); // make the cat fly

m2.setHasFur(true); // give the monkey fur

System.out.println(m1); // report

System.out.println(m2);

}

18. Even though we didn't define any methods in the Mammal class (except constructors), the accessible methods are inherited from the superclass Critter. Of course, any methods Critter inherited from its superclass, Object, are also passed down to Mammal. If we want to change how any of these methods are implemented, we can override them in the subclass. Override the toString method inherited from Critter so it reports that the object is a Mammal rather than a Critter. Execute Critter to verify the change.
19. Write a method crossBreed in the Critter class, represented in UML as follows:

+ crossBreed(other : Critter) : Critter
Crossbreed returns a new Critter which is a mixture of "this" and "other".
· If both "this" and "other" are Mammals, then the crossBreed will also be a Mammal. (Use the operator instanceof.)

· The new name is a concatenation of the original names.
· The new number of legs is this.numLegs.
· If either "this" or "other" has fur, then the crossBreed will also have fur.
· If both "this" and "other" can fly, then the crossBreed can also fly.
20. Add code to the main method in Mammal to demonstrate your crossBreed method on different combinations (at least one which results in a Mammal and another which doesn't). Print the results of your crossbreeding experiments to the console window.
--

Turn in the following to get credit for this lab (due 1-30-09):

· printout of your nicely-labelled console output (final run of Critter and final run of Mammal)
· by email, your Java code for Critter and Mammal (put each in an attached text file)
3

