Theory of Computation

Lab #5: Implementing a DFA class, part 3
In this lab, we finish our implementation of a DFA class in Java. The public methods to be added or updated are as follows:

· DFA(): 0-parameter constructor, uses console input to configure the DFA to user's specifications
· pump(String inString): demonstrates the Pumping Lemma for Regular Languages
· main(String[] args): invokes the 0-parameter constructor
We also add the following protected methods, which support the use of pre-defined DFA objects in the 0-parameter constructor:
· makePredefined(): initializes this DFA according to the user's choice of pre-defined object
· constructD1(): initializes this to be the DFA corresponding to Sipser, Figure 1.4

· constructD2(): initializes this to be the DFA corresponding to Sipser, Figure 1.8
· constructD3(): initializes this to be the DFA corresponding to Sipser, Figure 1.10
· constructD4(): initializes this to be the DFA corresponding to Sipser, Figure 1.12
· constructD5(): initializes this to be the DFA corresponding to Sipser, Figure 1.14
· constructD6(): initializes this to be the DFA corresponding to Sipser, Figure 1.22
Finally, we add the new class "DFAMenu" which contains static menu and query methods to support the DFA class 0-parameter constructor (all code provided).
WHAT TO DO:
1. Start Eclipse and open DFA.java.

2. From our course website (http://vault.hanover.edu/~wahl/TOCwin2008.htm), follow the link to Lab 5 documents.
3. Copy the entire contents of the source code file DFA, part 3; paste it over the main method in your DFA class. Save your DFA class.
4. In Eclipse, add a new class named "DFAMenu" to your finiteAutomata package. Copy the entire contents of the source code file DFAMenu and paste it over the contents of the DFAMenu class. Save your DFAMenu class.

5. Generate updated Javadoc documentation for your finiteAutomata project.
6. Skim through the Javadoc (DFA.html, DFAMenu.html) to familiarize yourself with the new methods.
7. In DFA.java, replace all occurrences of “// ???” with appropriate code.
8. When all syntax errors have been resolved, run your DFA class as a Java application. Verify that your methods seem to be working correctly by completing AT LEAST all the tests included on the third page of this document and examining the resulting output.
9. You are finished with this lab when the Lab 5 methods have been implemented according to the given specifications, the code has passed testing, and you have successfully generated Javadoc documentation for your updated project.
WHAT TO TURN IN (write your name on each item):
· Printed copy of your DFA source code
· Printed copy of your output from running DFA
· Electronic copy of DFA.html (email, CD, or flash memory)
· Electronic copy of DFA.java (email, CD, or flash memory)

· Due by ______________________
Minimum Testing Procedure for Lab 5; you should do extra testing as needed to convince yourself the program is working correctly. Accumulate all your output in a single text file by copying and pasting after each run of the program.
Part 1: Do not use a predefined DFA. Instead, use the menu to create a 5-state DFA which accepts the language xy*x and has one inaccessible state. Then use the menu to do the following:

a) print the language using maxLength = 12

b) remove all inaccessible states

c) print this DFA

d) print the language using maxLength = 12

e) pump the string "xyyx" on this DFA

f) pump the string "xyx" on this DFA

g) pump the string "xyyyy" on this DFA

h) pump the string "xyyyyx" on this DFA

i) exit from the menu (add the output to your text file before continuing)

Part 2: For each predefined DFA (1 through 6) use the menu to do the following:
a) print the language using maxLength = -1

b) print the language using maxLength = 0

c) print the language using maxLength = 1

d) print the language using maxLength = 4

e) test a non-empty string (use a string which should be rejected)

f) test a non-empty string (use a string which should be accepted)

g) test the epsilon string

h) pump a string, using a too-short string

i) pump a string, using a string which is long enough but should not be accepted

j) pump a string, using a string which is long enough and should be accepted

k) pump a string, using a different string which is long enough and should be accepted

l) exit from the menu (add the output to your text file before continuing)
