CS 225
Lab 4: Selection Sort and Bubble Sort
2-3-2012
Due: Weds 2-8-12
In this lab we create a class for sorting arrays of strings. The class will include methods which implement various sorting algorithms; to start with we will implement two simple sorts, Selection Sort and Bubble Sort.

1. Create a new class in the algorithms package, named StringSort. Ask Eclipse to create the main method stub for you.
2. Remember to adequately COMMENT each method you write for this lab (purpose, input, output, etc.).
3. Write a static method in StringSort called swap. Details:

· Swaps elements in specified positions in an array of strings.

· Input: a non-null array A of strings, and natural numbers i and j. Do not pass the length of A as a separate parameter; it is always available as “part” of A. (Use the expression A.length to access the length field of A.)
· Output: none

· Note 1: This method is a "mutator". The array A is altered by moving A[i] to position j and A[j] to position i.

· Note 2: If index i or index j is out of bounds for array A, the method simply prints a warning message to the console.

4. Write a static method in StringSort called selectionSort. The basic selection sort algorithm appears in your textbook on page 99. Details:
· Sorts a given array of strings by selection sort.
· Input: a non-null array A of strings.
· Output: none.
· Note 1: This method is a "mutator". The array is sorted "in place" into ascending order. Unless A is already in ascending order at the start, this method will alter A.
· Note 2: Do not write a for loop to compare strings A[i] and A[j] character-by-character; instead, call one of the compare methods of the String class to accomplish this in one line of code. Google the phrase “Java String class” to find the Oracle page containing the String class documentation. Read about comparing strings in Java.
5. Write a static method in Util called printStringArray. Details:

· Prints a given array of strings to the console window, one string per line.
· Input: a non-null array A of strings. Do not pass the length of A as a separate parameter; it is available when needed using the expression A.length.

· Output: none.
· The array is unchanged by this method.

6. Write a static method in Util called getStringArray. Details:
· Queries the user for a positive integer n and then, for i = 0 to n-1, asks the user to enter a string. The user-provided string is stored at position i in a string array of length n.

· Input: none.
· Output: Returns a string array of length n.

7. Add code to StringSort.main:

a. Use methods in the Util class to get an array of strings from the user.
b. Report the unsorted list of strings back in the console window.

c. Use StringSort.selectionSort to sort the array.

d. Report the sorted list of strings back in the console window.

e. Test your program. Try to break it with strange inputs! Fix any problems you find.

8. Write a static method in StringSort called bubbleSort. The basic bubble sort algorithm appears in your textbook on page 100. (Same input and output comments as selectionSort -- copy and paste.)
9. In StringSort.main, change the code to use bubble sort instead of selection sort. Test!
10. Optional Extra Credit: Add code to both sorts to track and report (a) the number of comparisons made in sorting the array; (b) the number of swaps made in sorting the array. At the end of each sorting method, print a short report which tells the length of the array, the number of comparisons used, and the number of swaps used.
==

To get full credit for this lab:

· email me your Util source code
· email me your StringSort source code
· demonstrate for me, in person, the correct operation of your program

3 | Page

