Theory of Computation

Lab #3b: Implementing a DFA class, part 2; Generating Javadoc Documentation
In addition to generating Javadoc documentation from our source files, we continue work on our DFA class from last week and add one more method ("accepts").
Here is a list of all the methods to be implemented for labs 3 and 3b combined:
· DFA(int n, String[] L, String startL, String a, int[][] t, boolean[] f): constructor

· finalStates(): returns the set of state numbers of all final states
· printDFA(): pretty-prints the DFA specifications
· printTransitions(): pretty-prints the DFA transitions

· stateName(int i): returns the label for a given state number
· stateNumber(String s): returns the index of a given String in the stateLabel vector
· validLabel(String s): tests whether a given String is a valid state label
· validState(int i): tests whether a given integer is in the proper range to be a state number
· accepts(String inString): tests whether this DFA accepts a given input string

· main(String[] args): test method
WHAT TO DO:
1. Start Eclipse and open DFA.java.

2. Find "Lab 3b Assignment" on our class webpage (vault.hanover.edu/~ wahl, etc.). Copy the code for the "accepts" method (below) and paste it just before main in DFA.java.

/**

 * Tests whether this DFA accepts a given String.

 * @param inString the String to be tested

 * @return true iff this DFA accepts inString

 * @pre inString is non-null

 */

public boolean accepts(String inString)

{

int[] array = new int[inString.length()];

// Step 1: Convert inString to an int array where each char is

// represented by its position in the alphabet (return false

// if find any symbols which are not in the alphabet)

// ???

// Step 2: Run the DFA on the input string to determine

// which state it is in after reading all the symbols

int current = start;

// for each char in inString move to the next state

// ???

// Step 3: Return result (does the DFA stop at a final state?)

// ???

 }

3. In DFA.java, replace all occurrences of “// ???” with Java code to finish the initial DFA implementation. When all syntax errors have been resolved, run your DFA class as a Java application. Verify that your methods seem to be working correctly.

4. Add code to your main method to test the new accepts method. Call accepts on m4 with various strings; including…

a. at least 2 strings which should be accepted,
b. at least 2 strings which should be rejected, and
c. a string which is not even written in the correct alphabet.
5. Delete the Hello class from your project.

6. Configure Eclipse to generate Javadoc documentation:

a. Use Project > Generate Javadoc ... to bring up the Javadoc dialog.
b. The first time you generate Javadoc, you have to specify the location of the file "javadoc.exe" in the field "Javadoc Command:" at the top of the dialog; it should be along a path of the form
C:\Program Files\Java\jdk . . . \bin\javadoc.exe
(browse to javadoc.exe on your C drive).
c. Check the button to "Create Javadoc for members with visibility: Private" to generate Javadoc for all classes and members.
d. Under “Select types for which Javadoc will be generated,” check the Coursework project and the finiteAutomata package.
e. Click Next twice to move to the third page of the dialog.
f. Create custom "pre" and "post" tags the first time you generate Javadoc; in the field for "Extra Javadoc options," enter :
-tag pre:cm:Precondition:

-tag post:cm:Postcondition:
g. Click Finish to generate the Javadoc documents. (You may have to adjust the Eclipse preferences so it can find the JDK you specified for javadoc.exe.)
7. In the Package Explorer window, open the destination folder you specifed for Javadoc and double-click on package-summary.html. You should see all of your FiniteAutomata classes in the class summary section.

8. Follow the various links in the class summary and skim through the Javadoc documentation for your finiteAutomata package.

9. Back in the source-code window, let your mouse linger over class names and method names; notice that the Javadoc comments appear in a pop-up.

10. Click on the "Javadoc" tab at the bottom of your Eclipse perspective. Double-click on a method name (for a class in this package) in your source-code window and see the Javadoc comments appear in the Javadoc window below.

11. You are finished with this lab when all the DFA methods have been implemented according to the given specifications, your test code in the main method runs correctly, and you have generated Javadoc documentation for your DFA class.
WHAT TO TURN IN (email attachments):
· DFA.java source code
· Output from running DFA.java

· Due: Weds 10-16-13
3

