Algorithms Lab #3: Anagrams
Due: Tuesday 1/29/13 by 5:00 PM (email attachment)
Two words are anagrams of each other if the characters in one of the words can be rearranged to form the other word. For example, "dormitory" and "dirtyroom" are anagrams. In today's lab we will implement, test, and analyze an anagram-checking function.

WHAT TO DO:

1. Start Eclipse to your workspace. Be sure you are using Eclipse 3.6 or higher (Helios, Juno), not Eclipse 3.2. Create a new package called "lab3" within the Algorithms project.
2. Create a new class called "Anagram" inside the lab3 package.
3. Work from the lab 3 source code poasted on vault to implement the Anagram class. Copy the provided code, select all of the Anagram.java code in Eclipse, and paste the copied code over it.
4. Implement the static method "anagramCheck". The Java keyword static indicates that we do not need an object of type Anagram on which to call the method anagramCheck; we simply provide all the needed data in the arguments we pass.
Using only basic elements of Java such as for loops and the charAt method to access individual characters in a StringBuilder object (a mutable string), write a simple, non-recursive algorithm to implement the anagram checker. Other StringBuilder methods you are allowed to use: setChar, length. The basic rule is, you may use the array-like methods of StringBuilder which access each individual character. You may not use higher-level methods like equals which involve all the characters in one line of code.
Start by outlining your algorithm in comments.

Java note: the following lines of code will print the character 'x' and the string "faxes" to the console.
StringBuilder s = new StringBuilder("taxes");

char c = s.charAt(2);

System.out.println(c);
s.setCharAt(0,'f');

System.out.println(s);
5. Write a main method to test two strings which are anagrams and two strings which are not anagrams. Fix any problems you find.

6. Create the anagram testing class, AnagramTest.java, using the "New JUnit Test Case" dialog. Have Eclipse create code to test the anagramCheck method. If you created a "helper" method for anagramCheck, create a test method for that as well.
7. Declare four strings as class variables in AnagramTest:

StringBuilder s1, s2, t1, t2;

8. In "setUp", initialize your four strings using string literals. For example, you might initialize s1 and s2 as follows:

s1 = new StringBuilder("dormitory");

s2 = new StringBuilder("dirtyroom");

9. Write assert statements to implement the test for anagramCheck. Note: create your tests so that anagramCheck(s1,s2) should return true and anagramCheck(t1,t2) should return false. Use these expected values (true, false) as the first arguments in your assert functions.
10. Are there other cases which should be tested? If so, create more test cases in setUp and write asserts for them in the test method for anagramCheck.

11. If you wrote any additional "helper" methods (other than main), implement testing methods for those as well.

12. Run your JUnit test code. Once you are satisfied that your code is correct for both Anagram and AnagramTest, you are almost done!

13. Answer these two questions in a multi-line comment at the bottom of your file Anagram.java. Measure the input size by n + m where n is the length of s1 and m is the length of s2.
a. For your solution, will different inputs of the same size cause different operation counts? For example, will some pairs of strings with n + m = 10 take less work to process than other pairs of strings with n + m = 10? Explain.
b. Analyze the overall time efficiency of your solution. If different inputs of the same size will cause different operation counts, do a worst-case analysis. Explain your thinking and summarize with the big-theta class.
14. Attach your files Anagram.java and AnagramTest.java to an email message and send to wahl@hanover.edu. Due Tuesday 1/29, 5 PM.
1

