GUI

Lab #2: MyPoint class

Lab 2 gives you more experience working with objects and classes in Java. You will design and implement a class named MyPoint to represent a point in R3 (3-dimensional space).

This lab is based on Liang exercise 7.11, p.258, with the following modification; the point will have three coordinates, stored in an array of double values called coordinates. To represent the point (x, y, z), coordinates[0] stores x, coordinates[1] stores y, and coordinates[2] stores z.

The MyPoint class contains the following members:

· a double array data field called "coordinates"

· a three-arg constructor which creates the point (x, y, z)
· a no-arg constructor which creates the point (0, 0, 0); implement by using keyword this to call the three-arg constructor

· accessor and mutator methods for data field "coordinates"

· a distance(MyPoint other) method which returns the distance from this point to point "other"

· a distance(double x, double y, double z) method which returns the distance from this point to (x, y, z); implement with a call to the first distance method

· a distance() method which returns the distance from this point to (0, 0, 0); implement with a call to the first or second distance method

· an equals method which overrides the default equals:
public boolean equals(Object other)
returns true when other is a MyPoint object with the same coordinates as this. Implement using the equals method for arrays (use the static method Arrays.equals, and provide as arguments the two arrays to be compared)
· an isZero() method which returns true when this point is (0, 0, 0); implement with a call to the equals method for MyPoint

· a toString() method which overrides the default toString:
public String toString()
returns a String appropriate for printing the point in (x, y, z) form to the console window. Refer to the BankAccount example code if you're unsure how to implement this.

WHAT TO DO:

1. Use a full sheet of paper to draw the UML diagram for the MyPoint class as described above, using private data and public methods.
2. Start Eclipse. If necessary, use File > Switch Workspace to switch to your Eclipse workspace (use the same computer as you did for lab 1).
3. Create a new class called MyPoint within the gui package.
4. Working from your UML diagram, implement the MyPoint class. Include appropriate comments before each method header, explaining the purpose, the inputs (along with any pre-conditions), and the result of the method.

5. Write a test program (in the main method of the MyPoint class) that creates three different points and exercises all the methods of the MyPoint class, printing appropriate and well-labelled messages to the console window as evidence that the methods are working correctly. Be sure to use all the constructors and all the methods.
6. Save, run, and debug your MyPoint class. Save your code in two different places, in case you need a backup.

7. Turn in the following to get credit for this lab:

· printout of your console output (copy and paste to a text editor such as Notepad, then print)

· UML diagram of the MyPoint class (hand-written or typed and printed)

· your Java code for MyPoint (email to wahl@hanover.edu, subject = CS 324 lab 2)

2

