CS 225A
11-10-08

Lab 16: Implementing Digraphs

Digraphs (directed graphs) are typically represented in one of two ways:

· using a boolean adjacency matrix

· using an array of linked lists

In this lab we will create a class DigraphM which uses the adjacency matrix representation and implement Warshall's algorithm (for transitive closure of a graph).
1. Start by adding a new class "DigraphM" to your algorithms package. Give it two data fields, a 22-dimensional boolean matrix "A" for storing information about the edges, and an int variable "numV" for the number of vertices in the graph. Implement the following methods in DigraphM:

· a constructor, DigraphM(int n), which constructs an edgeless GraphM on n vertices
· a boolean method, isAdjacent(int i, int j), which tests whether or not there is an edge from i to j
· a method with void return type, insertEdge(int i, int j), which inserts an edge from vertex i to vertex j
· a method with void return type, deleteEdge(int i, int j), which deletes an edge from vertex i to vertex j

· a toString() method, which returns a String fit for printing the digraph information (reports the number of vertices and uses a list of ordered pairs for the edges)

2. Insert the following test code and run the DigraphM class:

public static void main(String[] args) {

DigraphM D = new DigraphM(4);

// build the digraph on p.287 of our textbook

D.insertEdge(0,1);

D.insertEdge(1,3);

D.insertEdge(3,0);

D.insertEdge(3,2);

System.out.println("D = " + D);

D.deleteEdge(1,3); // delete an edge that's there

System.out.println("After deleting (1,3), D = " + D);

D.deleteEdge(1,0); // delete an edge that's not there

System.out.println("After deleting (1,0), D = " + D);

// test "isAdjacent" method

System.out.println("D.isAdjacent(3,0) = " + D.isAdjacent(3,0));

System.out.println("D.isAdjacent(2,1) = " + D.isAdjacent(2,1));

}

3. Implement Warshall's algorithm for transitive closure in DigraphM.
4. Back in main, insert the following code and run DigraphM (verify Warshall's algorithm seems to be working correctly).

DigraphM T = D.Warshall();

System.out.println("The transitive closure of D is T = " + T);
