Theory of Computation

Lab #11: Implementing a CNF class, part 3
 In this lab, we continue the creation of a Chomsky Normal Form class in Java by implementing a CNF constructor and some basic methods. Recall that a CNF grammar has a non-empty set of variables, a non-empty set of terminal symbols (disjoint from the set of variables), and a set of rules for transforming the variables. v0 will always be the "start" variable.
The terminal symbols of a CNF object are stored as an Alphabet (alpha). The variables are denoted v0, v1, v2, etc., where v0 is always the start variable. "numVars" records the number of variables in the grammar.
The grammar rules are stored in a two-dimensional array (numVars × 2) of Vectors of CNFRule objects. If vn is one of the variables, all the type 0 rules for transforming vn (form " vn -> vi vj " are stored in the Vector "rule[n][0]", and all the type 1 rules for transforming vn (form " vn -> terminal") are stored in the Vector "rule[n][1]".

If the rule "v0 -> epsilon" is included in the grammar, the boolean variable "startToEpsilon" is set to true (this is the only rule not stored in the rule array).
The CNF methods to be implemented in this lab are as follows:
· CNF(String a, int n, boolean b, Vector[][] r): constructor
· printCNF(): reports number of variables, alphabet of terminal symbols, and rule set
· printRules(): pretty-prints the rule set
· printLanguage(Vector v, int maxLength, boolean printDeriv): prints the strings in the given Vector, preceded by "epsilon" if epsilon is generated by this CNF (maxLength is used to generate an appropriate heading for the output)
· getLanguage(int maxLength): returns all non-empty terminal strings derivable in this grammar, up to a specified maximum string length
· testString(String s): tests whether a given String is a terminal string which can be generated by this grammar

· main(String[] args): test method
WHAT TO DO:

1. Start Eclipse.
2. Create a new class called "CNF" inside the finiteAutomata package.

3. From our course website (http://vault.hanover.edu/~wahl/TOCwin2008.htm), follow the link to Lab 11 documents and open the source code file, CNF1. Copy the contents of the file to your newly-created CNF class in Eclipse.
4. Save your CNF class.
5. Use Project > Generate Javadoc ... to generate updated javadoc documentation for your project.
6. Skim through CNF.java and CNF.html to familiarize yourself with the proposed implementation.
7. In CNF.java, replace all occurrences of “// ???” with Java code to finish the initial implementation.
8. When all syntax errors have been resolved, run your CNF class as a Java application. Verify that your methods seem to be working correctly.
9. You are finished with this lab when the required CNF methods have been implemented according to the given specifications, your test code in the main method runs correctly, and you have successfully updated the Javadoc documentation for your project.
WHAT TO TURN IN (write your name on each item):
· Printed copy of your CNF source code
· Printed copy of the resulting output
· Electronic copy of CNF.html (email, CD, or flash memory)
· Electronic copy of CNF.java (email, CD, or flash memory)
· Due by ______________________
