Theory of Computation

Lab #10: Implementing a CNF class, part 2
In this lab, we continue the implementation of a CNF class in Java by creating a second support class, "StringVarTerm", for representing strings of variables and terminals (such as occur in grammar derivations). Our StringVarTerm class will have the following data fields:
· “code”, a Vector of Integer codes to represent this string of variables and terminals

· “vars”, the number of variables in this string (vars == 0 iff this represents a terminal string)

· “alpha”, an Alphabet of allowed terminal symbols

· “derivation”, a sequence (Vector) of Strings showing how this StringVarTerm is derived from start (v0)
The “code” field needs some explanation. Suppose the Alphabet is {a,b,c}. Then the integers 1, 2, 3 will be used to represent, respectively, the terminal symbols a, b, and c. To represent the variables, we will use the non-positive integers: 0 for v0, -1 for v1, -2 for v2, etc. Thus, the string "c a v1 v2 b a v2" would be encoded by the integer sequence 3, 1, -1, -2, 2, 1, -2 (the corresponding Integer objects would be stored in the “code” Vector).
The StringVarTerm methods to be implemented in this lab are as follows:
· StringVarTerm(Alphabet S): 1-parameter constructor, creates the StringVarTerm representing the start string, "v0"

· numSteps(): returns number of steps to derive this StringVarTerm from v0
· copy(): returns a deep copy of this StringVarTerm

· derivation(): returns a deep copy of this.derivation

· code(): returns a deep copy of this.code

· printStringVarTerm(): pretty-prints a report on this StringVarTerm

· printDerivation(): pretty-prints this.derivation

· toPrettyString(): returns a "pretty" representation of the string represented by this StringVarTerm.

· toTermString(): decodes this StringVarTerm (assuming it has no variables); returns a terminal string with no whitespaces

· applyRule(CNFRule r): returns the result of applying the given CNFRule to the LEFT-MOST variable in this StringVarTerm

· leftMostVarIndex(): returns the index (position) of the left-most variable in this StringVarTerm
· leftMostVariable(): returns the left-most variable in this StringVarTerm; for example, if this represents "a b v3 v2 v7", will return 3
· matches(CNFRule r): tests whether a given rule applies to the left-most variable in this StringVarTerm

· equalTermString(String s): tests whether a given String is a non-empty string of terminals and, if so, whether this.code represents the same string of terminals

· equalString(StringVarTerm other): returns true iff this.code and other.code represent the same string of variables and terminals (perhaps with different derivations)

· main(String[] args): test method
WHAT TO DO:

1. Start Eclipse.
2. Create a new class called "StringVarTerm" inside the finiteAutomata package.
3. From our course website (http://vault.hanover.edu/~wahl/TOCwin2008.htm), follow the link to Lab 10 documents. Copy the contents of the source code file StringVarTerm and paste it over the contents of your StringVarTerm class back in Eclipse. Save.
4. Generate updated Javadoc documentation for your finiteAutomata package.
5. Skim through StringVarTerm.html and StringVarTerm.java to learn about the proposed implementation. Ask questions as needed about any items you don’t understand.

6. In StringVarTerm.java, replace all occurrences of “// ???” with Java code to finish the implementation of this class.
7. When all the syntax errors have been resolved, run your StringVarTerm class as a Java application. Verify that your methods seem to be working correctly.

8. You are finished with this lab when all the StringVarTerm methods have been correctly implemented, your test code in the main method runs correctly, and you have successfully updated the Javadoc documentation for your project.
WHAT TO TURN IN (write your name on each item):

· Printed copy of StringVarTerm.java
· Printed copy of your output
· Electronic copy of StringVarTerm.html (email, CD, or flash memory)

· Electronic copy of StringVarTerm.java (email, CD, or flash memory)

· Due by ______________________
