CS 223A

Homework Assignment #9
Due Wednesday 11-29-06
Exercises:  Chap 12 #1, 2, 12, 13, 14, 21    Chap 13 #4, 5, 8, 11
Program 1:  A ComparatorHeap is ordered according to an explicit Comparator for the objects stored in the heap, rather than by the compareTo method in the Comparable interface.  This makes it easier to work with complicated objects which can be compared using different fields, and for sorting into ascending or descending order, etc.

Since the objects being stored are no longer required to be comparable, the ComparatorHeap class will not explicitly implement the PriorityQueue interface.  Nevertheless, it does “implement” the idea of a priority queue.

Copy the source code for Bailey’s VectorHeap class (http://www.cs.williams.edu/~bailey/JavaStructures/bailey/structure/VectorHeap.java).  In Eclipse, create a new class named ComparatorHeap.  Paste the VectorHeap code into ComparatorHeap and adapt it to satisfy the following requirements.
1.  A ComparatorHeap has two fields:

    protected Vector data;  // the data, kept in heap order

    protected Comparator c; // a comparator, for sorting the data

2.  A ComparatorHeap has four constructors:

     public ComparatorHeap()

    // @post constructs a new (empty) priority queue using the
    // NaturalComparator

    public ComparatorHeap(Comparator comp)

    // @post constructs a new (empty) priority queue user a 

    // user-supplied Comparator

    public ComparatorHeap(Vector v)

    // @post constructs a new priority queue from an unordered vector

    // using the NaturalComparator

    public ComparatorHeap(Vector v, Comparator comp)

    // @post constructs a new priority queue from an unordered vector

    // using a user-supplied Comparator
3.  A ComparatorHeap has the following methods, most of which are adapted from (or exactly the same as in) Bailey’s VectorHeap:

    protected static int parent(int i)
    protected static int left(int i)

    protected static int right(int i)

    public Object getFirst()

    public Object remove()

    public void add(Object value)

    public boolean isEmpty()

    protected void percolateUp(int leaf)

    protected void pushDownRoot(int root)

    public int size()

    public void clear()

    public String toString()

    public ComparatorHeap copy()

    // post: returns a copy of this heap (non-destructive!!)
    // HINT: You can write this in ONE LINE of code
    public Vector makeOrdered()

    // post: destructively creates an in-order Vector from

    // this heap (this heap will be emptied!!)
    // HINT: You can write this in FOUR LINES of code

4.  The keyword Comparable should not appear in the code for ComparatorHeap.  Use the “edit” menu in Eclipse to search and destroy!

5.  Copy the following main method and run the application to test your code.  (Copy the main method code from my vault site, vault.hanover.edu/~wahl etc... and paste into Eclipse).

public static void main(String args[])

    {

// make a list of words
    
Vector words = new Vector();

    
words.add("vector");

    
words.add("tree");

    
words.add("vectorheap");

    
words.add("Katie");

    
words.add("queue");

    
words.add("queuelist");

    
words.add("string");

    
words.add("quicksort");

    
words.add("exponential");

    
words.add("encapsulation");

    
words.add("postcondition");

    
words.add("Josh");

    
words.add("interface");

    
words.add("implementation");

    
words.add("hashing");

    
words.add("graph");

    
words.add("Fibonacci");

    
words.add("iterator");

    
words.add("constructor");

    
words.add("Joey");

    
words.add("comparator");

    
words.add("binaryTree");

    
words.add("assertion");

    
words.add("Joel");

    
words.add("abstraction");    


// put wordlist into a heap, ordered alphabetically

// (uses NaturalComparator for Strings)
    
ComparatorHeap heap = new ComparatorHeap(words);

    
System.out.println(heap);

    
System.out.println("size of heap before makeOrdered = " + 



heap.size());

// use the heap to sort the wordlist
    
words = heap.makeOrdered();

    
System.out.println("size of heap after makeOrdered = " + 



heap.size());

    
System.out.println("size of word list after makeOrdered = " + 


words.size());

// print the sorted wordlist
    
for(int i=0; i<words.size(); i++)

    

System.out.println(words.get(i));

    }
Program 2:  Make a new class in Eclipse called Person.  Give each Person four fields:  

protected String last;

// person’s last name

protected String lirst;

// person’s first name

protected int age;

// person’s age, in years

protected String food;

// person’s favorite food

1.  Write a 4-parameter constructor for creating a fully-specified Person object, and a no-parameter (“default”) constructor for creating a default Person object.  

2.  Write public “get” and “set” methods for the four fields.  (In the “source” menu, you can automatically generate these.)

3.  Include the following toString() method so that System.out.print(x) will do a decent job of printing Person x’s information:

 
public String toString()


{



return (first + " " + last + " is " + age + " and likes " + food);


}
4.  Define classes for four Comparators to be used when the following orderings are desired:
(a) Comparator1:  by name (last name, then first)

(b) Comparator2:  by favorite food, alphabetical

(c) Comparator3:  by age, ascending

(d) Comparator4:  by age, descending

5.  Write a main method which creates a Vector of at least 15 different Person objects (give some of them the same last name), with a variety of values in the fields.  Then use your comparators and your ComparatorHeap class to sort the vector in the four ways listed above.  Print the list after each sort.  

Example:  If the Person objects are stored in a Vector called people, and Comparator3 is for age (ascending), then some of your code might look like:

ComparatorHeap heap = new ComparatorHeap(people, new Comparator3());

people = heap.makeOrdered();
System.out.println(“List of people, sorted by age (ascending):”);

for(int i=0; i<people.size(); i++)


System.out.println(people.get(i));
