CS 223A

10-27-06

Assignment #7 due 11-03-06

	Hwk #7
	p.233 #9.1, 9.2, 9.3, 9.4, 9.5, 9.7

p.261 Chapter 10 #1-6, 9, 10, 11, 13

+ two programs on Eclipse
	11/03/06

Programs to implement on Eclipse:

1. Do Problem 9.14. Efficiently implement the QueueList class using SinglyLinkedListElements, a head reference, and a tail reference – don’t use the CircularList class. I will provide a test “main” on my vault website. Determine the time complexity (big-O analysis) for each of the QueueList methods.
2. DEQueue. A “DEQueue” is a double-ended queue; items may be added and removed from either end. There is no bound on the capacity of a DEQueue, beyond the physical capabilities of the computer the program is running on.

The public interface for DEQueue includes the following methods:

1. constructor to create an empty DEQueue

2. clear()
// post: this DEQueue is empty

3. size()
// post: returns current number of items in queue
4. isEmpty()
// post: returns true iff there are no items in queue
5. addFirst(Object v)

// post: puts v at head of queue

6. addLast(Object v)

// post: puts v at tail of queue

7. removeFirst()

// pre: DEQueue is not empty

// post: deletes and returns item at head of queue

8. removeLast()

// pre: DEQueue is not empty

// post: deletes and returns item at tail of queue

9. peekFirst()

// pre: DEQueue is not empty

// post: returns item at head of queue; does not alter queue
10. peekLast()

// pre: DEQueue is not empty

// post: returns item at tail of queue; does not alter queue
(a) Based on their implementations in your text, determine which of the following structures should be used to implement a DEQueue efficiently (in terms of time complexity): Vector; SinglyLinkedList; DoublyLinkedList; or CircularLinkedList. Explain why your choice is superior to the others.
(b) Implement DEQueue in Eclipse, keeping in mind your answer to part (a). I will provide a test “main” method on my vault website.
(c) Determine the time complexity (big-O analysis) for each of the DEQueue methods (1-10 above) in your implementation.

