CS 223A
Hashing Strings in Java

hashCode

public int hashCode()

Returns a hash code for this string. The hash code for a String object is computed as

 s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

using int arithmetic, where s[i] is the ith character of the string, n is the length of the string, and ^ indicates exponentiation. (The hash value of the empty string is zero.)

Overrides:

hashCode in class Object
Returns:

a hash code value for this object.

See Also:

Object.equals(java.lang.Object), Hashtable
(The above was taken from: http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html#hashCode() on 11-28-2006)

The unicode values of some common characters are shown in the following table.

	char
	0
	1
	2
	9
	A
	B
	C
	Z
	a
	b
	c
	z

	Unicode value
	48
	49
	50
	57
	65
	66
	67
	90
	97
	98
	99
	122

So, for example, the hashCode for “CAB” is

[image: image1.wmf]66468

66

2015

64387

66

*

37

65

*

31

67

*

31

0

1

2

=

+

+

=

+

+

When the result of the hashCode computation is larger than the largest representable int, it “overflows” and may become negative. So, to turn the result of hashCode into an actual hash location f(s),
[image: image2.wmf]tableSize,

)

(

0

<

£

s

f

two things must be done:
1. Compute hashCode modulo tableSize to keep the hash location from going beyond the end of the array.

2. If the result from step 1 is negative, add tableSize to it to bring the hash location into the positive range.

You should now understand the code of the hashVal function we saw in class on 11/28:

public static int hashVal(String s, int tableSize)

{

int n = s.hashCode()%tableSize;

if(n<0)

n = n+tableSize;

return n;

}

_1226225616.unknown

_1226226655.unknown

