Algorithms 1-14-13

Handout to accompany Section 2.2
· Roster, collect lab 1, collect 2.2 reading questions...

· Questions?

· Review the Analysis Framework (p.50).
· What questions do you have after reading Section 2.2: Asymptotic Notations and Basic Efficiency Classes?

· How do we use limits and ratios to compare the growth rates for two functions t and g? (See p.57.)

· What are the basic efficiency classes, and where do we draw the line between acceptable time efficiency (efficient enough to be used on large inputs) and unacceptable time efficiency (unusable except on small inputs)? (See p.59.)

Here is a good “brute-force” algorithm, in Java-like pseudocode, for solving the OddSum problem (from last week’s discussion).
ALGORITHM OddSum(n)
// adds the first n odd positive integers
// Input: positive int n, the number of integers to be added
// Output: returns value of (1 + 3 + 5 + ... + nth odd pos int)
i=0
odd=1

acc=0

// accumulate the desired sum

while(i < n)

acc = acc + odd

odd = odd + 2

return acc
Discussion:
a) How many test cases are needed to test this code? Why?

b) Do adequate testing, and fix any problems you find.

c) Use n to measure the input size. Follow through on the rest of the analysis for this algorithm. What is the basic operation? What is the exact function t(n) for the basic operation count here? What is the “big theta” class for t(n)?
d) Try to find a significantly faster algorithm for the OddSum problem. Analyze the faster algorithm. What is its “big theta” class for time efficiency?
