Algorithms 1-10-13

Handout to accompany Section 2.1

Typically in this class, when feasible, we reserve the letter ‘n’ for the size of the input. When the input is an array, we generally name the array A and assume it has length n (indexed from 0 to n-1). This is indicated with the notation A[0..n-1]. We then use ‘n’ rather than A.length in the pseudocode.
Here is the standard “brute-force” algorithm, in Java-like pseudocode, for solving the repeated elements problem (from yesterday’s class discussion).
ALGORITHM HasRepeats(A[0..n-1])
// Checks an array for repeated elements

// Input: A, an array of integers

// Output: returns true iff there is at least one
// repeated element

for(i=0; i<n; i++)

for(j=i+1; j<n; j++)

if(A[i] == A[j])

return true

return false
For this algorithm, would we need to distinguish between best- and worst-case time efficiency? How would we find the average-case time efficiency? Explain.

Group work:

1. Choose a different partner than yesterday.

2. Work together to write an algorithm for the “odd sum” problem: given a positive integer n, calculate the sum of the first n odd integers. Make your algorithm as efficient as you can, and write it on the board.

3. Then, write an algorithm for the “palindrome checker” problem: given a string S of length n, determine if the string is a palindrome (reads the same way both left-to-right and right-to-left). Make your algorithm as efficient as you can. We will put these algorithms up on the board after discussing the odd sum problem, if we have time.
4. As time allows, think about best-case vs. worst-case input for your algorithms.

5. What would be required to find average-case efficiency for your palindrome checker algorithm?
