
CS 324 – GUI
Lab 7: Hybrid Car Dealership Application for the Decorator Pattern

Due: Mon 2-11-13, 11:55 PM

You are responsible for maintaining the gui for a hybrid car dealership. The models and options vary year-to-year. You’ve decided to use the Decorator pattern behind the scenes because it will be easy to update at the beginning of each year.
The following Decorator Pattern example is borrowed from ActionScript 3.0 Design Patterns, by William Sanders and Chandima Cumaranatunge (O'Reilly). It uses the setting of selecting automobiles and their options to illustrate how to dynamically input data for both decorators and concrete components
1. Create an abstract class, Auto. Adapt the code in HFDP (p.95) to implement Auto. Like Beverage, Auto will have a data member "description" (type String), a public getter, "getDescription()", and a declaration for a cost function: public abstract double cost().
2. Create an abstract class, OptionDecorator, which extends Auto. Adapt the CondimentDecorator code on p.95 to implement this class.
3. Each car type is represented by a concrete subclass of Auto. Create these four subclasses. In the names shown below, include the tilde (~) character for formatting purposes. Adapt the code on p.96.
· class: Prius

· description = “Toyota Prius ~”
· cost() method returns 21725.00
· class: Mariner

· description = “Mercury Mariner Hybrid ~”

· cost() method returns 29225.00

· class: Accord

· description = “Honda Accord Hybrid ~”

· cost() method returns 30990.00

· class: Escape

· description = “Ford Escape Hybrid ~”

· cost() method returns 26240.00

4. With all of the concrete components in place, the next step is to add the concrete decorator classes. Adapt the code on p.97 to create subclasses of OptionDecorator called HeatedSeats, MP3, etc. -- one for each option in lab 6.
a. In each of the four classes, declare a default-access data member, Auto auto.
b. Implement the constructor, the getDescription() method, and the cost() method for each class, as shown on p.97.

c. Notice the decorator will *first* delegate the "cost()" or "getDescription()" call to the object being decorated, before adding the cost of the option or appending the description of the option.

5. Back in the Auto class, implement a
public String toString()
method for reporting the name and cost of any object of type Auto. For example, if “this” refers to an Accord object decorated with heated seats and MP3, then this.toString() should use this.getDescription() and this.cost() to return the following message:
Honda Accord Hybrid ~Heated Seats ~MP3 ~costs $31615.0

6. Write a main method in a separate test class to demonstrate the functionality of your program. Adapt the code on p.98, and use your toString() method to make the reporting easier.
7. Zip together all your source code files and a sample output file. Upload to My Hanover to complete the Lab 7 assignment. Soon we will see how to combine labs 6 and 7 into a working gui application – but we need to learn about listeners first, to implement the "calculate" button.
1 | Page

