GUI
2-11-09

Getting Started with GUI Programming -- YAY!
These programming exercises demonstrate a bit of how to create user interfaces in Java using frames, panels, and simple GUI components. You'll see examples of the three most common layout managers for organizing the components in a container, and how to specify colors and fonts.
1. Create a new class ShowFlowLayout inside your gui project. The code for this class is in Liang (p.407). It demonstrates the "flow layout" manager, which arranges components in the container from left to right in the order in which they were added. When one row is filled, a new row is started.
a. Notice that ShowFlowLayout extends JFrame. So, what is the first action taken by the constructor defined in lines 7 through 19?

b. A JFrame is a window which will be displayed on the screen when the method "setVisible(true)" is invoked. Look at the top of p.404 to learn about the methods in the JFrame class which are inherited by ShowFlowLayout.
c. Create and run the ShowFlowLayout class (take the code from p.407) and verify that the result is as in Figure 12.7

d. On line 25, setLocationRelativeTo(null) centers the frame on the screen. Change line 25 to setLocation(0,0). The parameters to setLocation tell the coordinates of the upper-left corner of the frame. Re-run to see the effect.
e. Change line 25 to setLocation(200,50). Re-run to see the effect.
f. Change the size parameters on line 27. Re-run to see the effect.
g. The add method, used in lines 13-18, is used to add labels and text fields to the frame. Add a label and a text field for asking the user their email address. Re-run to see the effect.
h. Change the layout manager (line 10) to RIGHT alignment with no gaps. Re-run to see the effect.
2. Create a new class ShowGridLayout inside your gui project. The code for this class is in Liang (p.409). It demonstrates the "grid layout" manager, which arranges components in an m by n grid pattern. The fully-specified GridLayout constructor allows you to specify number of rows, number of columns, horizontal spacing between components, and vertical spacing between components.
a. This class also extends the JFrame class. So, the first thing the constructor does is (invisibly) call the no-arg constructor of the JFrame class, creating a default frame with no title.
b. Much of the code for this example is the same as the previous example, so copy-and-paste from ShowFlowLayout, then make the necessary changes to create the code on p.409-410 (but keep the label and textfield you added for email address).
c. Run the ShowGridLayout class and verify that the result is similar to Figure 12.9.
d. Either the number of rows or the number of columns in the GridLayout can be zero, but they can't both be zero. If one is zero and the other is nonzero, the nonzero dimension is fixed while the zero dimension is determined dynamically by the layout manager. Change the code on line 10 (p.409) to specify 0 rows and 4 columns. Re-run to see the effect.
e. Now specify 4 rows and 0 columns. Re-run to see the effect.
f. If both the number of rows and the number of columns are specified as nonzero, the layout manager ignores the number of columns and just makes sure to create the number of rows requested. Specify 2 rows and 20 columns. Re-run to see the effect. Specify 3 rows and 1 column. Re-run to see the effect.
3. Create a new class ShowBorderLayout as given in Liang (p.410-411). In BorderLayout the manager divides the window into five areas: east, south, west, north, and center. When components are added to a BorderLayout using add, the default destination is center. To specify a different component, use a second parameter to the add method. For example, see lines 10-15 of the ShowBorderLayout code (p.411). When a window with border layout is resized, the north and south components can stretch horizontally, the east and west components can stretch vertically, and the center component can stretch in both directions to fill any empty space.
a. Use the code given on p.410-411 to create and run the ShowBorderLayout class. Verify Figure 12.11.

b. Use the mouse to resize the window in various directions and note how the components stretch to keep the window filled.

c. Try commenting-out the button for "North". Re-run and see the effect of a missing component. Experiment with eliminating various combinations of regions.
d. Read about the Color class, p.412-413. Set the foreground color of the "South" button to MAGENTA. Set the background color of the "West" button to YELLOW. Re-run to see the effect.
e. Read about the Font class, p.413. Set the font of the "South" button to Times New Roman, bold, 20 point, by invoking
 setFont(new Font("TimesRoman",Font.BOLD,20))
on the reference variable for the "South" button. Re-run to see the effect.
4. IF YOU HAVE TIME, get the code for TestImageIcon (p.418-419) working. This example shows how you can use graphics files to create custom icons.
a. Create a folder called "image" in the same directory where your "gui" folder resides. Inside the image folder, store one or more image files (in GIF, JPEG, or PNG format).
b. In the code on lines 5 trhough 8, replace your author's sample image files with your own filenames.
2

