GUI
2-20-09

Graphics in Java
Today's programming exercises, from Liang Chapter 13, demonstrate a bit of how to draw graphics objects using the methods in the Graphics class (java.awt.Graphics). Examine the UML class diagram in Figure 13.3 (p.427) to get a feeling for the basic options: we can draw strings, line segments, rectangles, rounded rectangles, 3-D rectangles, ovals, arcs, polygons, etc.

Take note of the following:

· Each component has its own coordinate system with the origin (0,0) at the upper-left corner. The x coordinate increases to the right and the y coordinate increases downward. For example, the point (10, 20) is 10 pixels to the right and 20 pixels down, starting from the upper-left corner.

· The Graphics class is an abstract class that provides a device-independent graphics interface for displaying figures and images on the screen. Whenever a component is displayed, the JVM (java virtual machine) automatically creates a Graphics object for the component on the native platform. This object can be obtained by the user via the getGraphics() method, as in: Graphics g = x.getGraphics();
1. As a first demonstration using the Graphics class, create and run a new class called TestGetGraphics inside your gui project. The code for this is in Liang (p.428). It demonstrates the difficulty of using the getGraphics() method in practice.
a. Notice that TestGetGraphics extends JFrame. So, what is the first action taken by the constructor?

b. Run the class and verify that the result is as in Figure 13.4.
c. What happens when you resize the frame using the mouse?
d. Why does the word "null" appear in the console window?
2. When the frame is resized with the mouse, the JVM automatically invokes the paintComponent method to redisplay the graphics on the component. Since you did not draw a line in the paintComponent method, the line disappears when the frame is resized. To permanently display the line, you need to draw it in the paintComponent method.
a. Create a new class NewLabel, which extends JLabel, as shown on p.429-430 (lines 19-28). Notice that whenever a NewLabel instance is repainted, the usual operations for a JLabel are performed (super.paintComponent(g) invokes the corresponding method in the JLabel class) and then the line from (0,0) to (50,50) is drawn.
b. Create a new class TestPaintComponent, which extends JFrame, as shown on p.429 (lines 1-17). Use copy and paste to avoid retyping repetitive code from TestGetGraphics (main method).
c. Run the TestPaintComponent class and verify that the line no longer disappears when the frame is resized.
3. Still, when the frame is resized, the location of the word "Banner" changes accordingly. If we want to give it a fixed position relative to the upper-left corner of the frame, the usual method is to draw our graphics objects on a panel and add the panel to the frame.

a. Create a new class NewPanel, which extends JPanel, as shown on p.431 (lines 19-25). Notice that whenever a NewPanel instance is repainted, the usual operations for a JPanel are performed (by super.paintComponent(g)) and then the line is placed from (0,0) to (50,50) and the word "Banner" is placed at (0,40).
b. Create a new class TestPanelDrawing, which extends JFrame, as shown on p.430 (lines 1-17). As before, copy and paste to avoid repetitive typing.
c. Run the TestPanelDrawing class and verify that now the line and the word "Banner" remain fixed as the frame is resized.
4. We can draw a rectangle by specifying four integer parameters: the coordinates of the upper-left corner, the overall width, and the overall height.
a. Change the contents of the NewPanel panel by modifying the paintComponent method as follows:
super.paintComponent(g);

g.setColor(Color.GREEN);

// Get the panel size
int width = this.getSize().width;

int height = this.getSize().height;

// Draw a filled rectangle, slightly smaller than the panel

g.fillRect((int)(0.1*width),(int)(0.1*height),
 (int)(0.8*width),(int)(0.8*height));
b. Run the TestPanelDrawing class and verify that as you resize the frame, the green rectangle remains centered and fills 80% of the width and height of the frame.
c. Give NewPanel an instance variable "color" of type Color. Give NewPanel a 1-arg constructor which allows the user to set the desired color. Give NewPanel a no-arg constructor which sets color to Color.GREEN. In the paintComponent method, change "Color.GREEN" to "this.color".

d. Change the constructor in TestPanelDrawing to add four NewPanel objects in a GridLayout (2 by 2), using four different colors. Run TestPanelDrawing and verify that it works as expected.
e. IF TIME ALLOWS, change the paintComponent method in NewPanel to test other methods in the Graphics class (for drawing ovals, arcs, polygons, etc.).
2

