CS 225J -- Algorithms

Exam 4 practice problems
4-12-12
1. Consider the brute-force recursive algorithm "valueR" which we used in our Binomial lab for computing the binomial coefficient
[image: image1.wmf]÷

÷

ø

ö

ç

ç

è

æ

k

n

:

public long valueR()

{

// base cases

if(n <= 0)

return 1;

if(k == 0 || k == n)

return 1;

// recursion

Binomial x = new Binomial(n-1,k-1);

Binomial y = new Binomial(n-1,k);

return x.valueR() + y.valueR();

}
a. Count the number of recursive calls made by valueR in computing
[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

3

6

.
b. Is valueR a good method for computing the binomial coefficient
[image: image3.wmf]÷

÷

ø

ö

ç

ç

è

æ

k

n

? Explain.
c. ValueD is the dynamic programming algorithm for computing a binomial coefficient, as given in section 8.1 Show the table of values stored by the dynamic programming algorithm "valueD" in computing
[image: image4.wmf]÷

÷

ø

ö

ç

ç

è

æ

3

6

. Don't show any values which are not actually stored.

d. Analyze the time efficiency of the dynamic programming algorithm for computing the binomial coefficient
[image: image5.wmf]÷

÷

ø

ö

ç

ç

è

æ

k

n

. Give the big theta class and explain your analysis clearly.
e. Describe the most efficient algorithm you can for calculating
[image: image6.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 where n is an arbitrary natural number. Analyze the time efficiency of your algorithm. (What is the basic operation or operations?).
2. Prim's algorithm.
a. Clearly state the problem which is solved by Prim's algorithm. What is the input? What is the return value?
b. Apply Prim's algorithm to the following graph, starting with vertex a. Make a list of the tree edges, in the order in which they are added to the tree by the algorithm. <insert weighted graph here>
c. Prim’s is a “greedy” algorithm. What are the distinguishing features of a greedy algorithm?
3. Fill in the blank with the appropriate mathematical expression:
"If a problem is to be solved using a binary decision process, and if there are N possible answers to the problem, then the binary decision tree must have a height of at least _________________ ." What does this tell us about the best possible efficiency of an algorithm for solving such a problem?
4. Consider the sorting problem: "Given an array of comparable values,
A[0..n-1], sort the array into increasing order using key comparisons."
a. Compute the "trivial" lower bound time efficiency class for any such sorting algorithm. Give the big omega class (omega, since it’s a lower bound) and explain your analysis clearly.

b. There are n! (n factorial) possible orderings of a list of n values. Use this fact to compute the "information-theoretic" lower bound worst-case time efficiency class for any sorting algorithm which works by making pairwise comparisons. Give the big omega class and explain your analysis clearly.

c. Because there are 3! possible orderings, a decision tree of depth at least _______ is required to sort a list of three elements. Fill in the blank, and draw the decision tree for an optimal algorithm to sort a list of three elements, A = [a, b, c], using pairwise comparisons.
5. a. Create a Huffman code for the following table of character frequencies.

	char
	A
	B
	C
	Y
	Z

	frequency
	.25
	.25
	.35
	.10
	.05

b. Show how we could encode the characters given in part (a) using equal-length binary codes, making the codewords as short as possible.
c. Calculate the compression ratio for your Huffman code in part (a), as compared to the equal-length encoding in part (b).

6. A decision problem is a problem which has a boolean (yes/no) answer. For example, given an integer n, we might ask, "Is n prime?" That would be a decision problem.

a. Explain what it means for a decision problem to be undecidable.

b. Explain what it means for a decision problem to be in the class P.

c. Explain what it means for a decision problem to be in the class NP.

d. Is every problem in NP also in P? Explain.
e. Is every problem in P also in NP? Explain.
7. Consider the m-coloring problem: "Given a graph, and a positive integer m, is there a way to color the vertices of the graph with m colors such that adjacent vertices will never have the same color?"
a. Show that the following graph can be 3-colored. <insert graph here>
b. Can the graph in (a) be 2-colored? Explain.

c. Convince me that the m-coloring problem is in NP; clearly describe the algorithm which demonstrates this fact.
8. Suppose we have a Heap class as in Lab 11. It has an empty-heap constructor, a heap-bottom-up constructor, and 3 data members:

private int capacity; // max size

private int size; // current item count

private int[] H; // heap items stored in H[1..size]

a. For a heap of size n, find the worst-case time efficiency of the percolateDown method. Explain your reasoning.

private void percolateDown(int k)

{

if(k < 1 || k > size/2)

return;

int v = H[k];

boolean heap = false;

while(!heap && 2*k <= size)

{

int j = 2*k;

if(j<n && H[j+1] > H[j])

j++;

if(v >= H[j])

heap = true;

else

{

H[k] = H[j];

k = j;

}

}

H[k] = v;
}
b. Assume we have already implemented the percolateUp method; percolateUp(i) percolates up in the heap from position i. Write correct and efficient Java code for the insert method. The explanatory comments and declaration are provided below.
// insert a value into the heap

// input: the int value to be inserted

// result: does nothing but return false if the heap is

// currently full; otherwise, accomplishes the insert and
// returns true

public boolean insert(int val)

c. Write pseudocode for heapSort. The input is an array A[1..n] (indexed from 1) which is to be put into ascending order using standard heap methods.

d. What is the worst-case time efficiency of heapSort?
e. Find the smallest and largest number of keys that a heap of height h can contain.

f. Find the height of a heap with n nodes.

g. Outline an algorithm for checking whether an array A[1..n] is a heap, and determine the time efficiency of your algorithm.
5

_1333267300.unknown

_1364373178.unknown

_1333266792.unknown

