Math 112

4-12-12
Study Guide
Exam #4 will be given Monday 4/16/12, at 7 PM.  It will cover Chapter 5, plus Section 6.1.

Suggestions:
· Start preparing early.  Solve the practice problems (below) and go back over problems from assignments and in-class work.  

· Not all problem types are represented in the practice problems, so it’s important that you also review homework assignments and class notes.
· In addition to homework-type problems, I will ask concept questions.  The concept questions will all be similar to those included in the practice problems.
· Take care of yourself.  Time spent sleeping is not wasted!  A sleep-deprived brain will not serve you well on exam day.  If you nap right after studying, your brain will process the information as you rest.

Practice Problems for Exam 4
1. Speedometer readings for a motorcycle at 12-second intervals are given in the table.  Use the sum L5 to estimate the distance traveled by the motorcycle for time 0 to 60 sec.  

	Time (sec.)
	0
	12
	24
	36
	48
	60

	Speed (ft/s)
	30
	28
	25
	22
	24
	27


2. Use 4 midpoint rectangles to estimate 
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.  Illustrate with an appropriate diagram.

3. The sum 
[image: image2.wmf]å

=

D

=

n

i

i

n

x

x

f

R

1

*

)

(

  is called a Riemann sum after the German mathematician Bernhard Riemann (1826-1866).  

(a)  Explain (in terms of rectangles drawn on the graph of f) each of the following symbols:  n,
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.  The word “rectangle” should appear in each of your answers!  
(b)  On the given graph of f, draw the rectangles for a Riemann sum with n = ____ over the interval _______ .  
(c) State the limit definition of the definite integral:  
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4. Use the limit definition of the definite integral to evaluate 
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.  Use right-endpoint rectangles with 
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5. What is the geometric interpretation of 
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 on [a, b]?  What is the geometric interpretation of 
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 takes both positive and negative values on [a, b]?  Illustrate each answer with an appropriate diagram.
6. Does 
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7.  Justify:  If f is an odd function which is continuous on [-a, a] then 
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= 0 .  
Also, illustrate with an example of a specific odd function and a specific interval of the form  [-a, a].  (For your specific example, use FTC II to demonstrate that the integral is equal to zero.)

8.  Justify:  If f is an even function which is continuous on [-a, a] then 
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 .  Also, illustrate with an example of a specific even function and a specific interval of the form [-a, a].  (For your specific example, use FTC II to demonstrate that 
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9.  State the Fundamental Theorem of Calculus, Part 1 (for differentiating a function defined by integration over [a, x]).  Be careful to include any necessary hypotheses.  
10.  State the Fundamental Theorem of Calculus, Part 2 (for evaluating a definite integral via antidifferentiation).  Be careful to include any necessary hypotheses.  

11.  State the Net Change Theorem.

12.  Explain how calculus is used to find the area between two curves 
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 which intersect at two points, P(a, f(a)) and Q(b, f(b)).  Illustrate with a diagram showing the graphs, the points of intersection, the shaded area between, and a typical cross-section segment.  Write an integral for the area and write an explanatory sentence.
13. Suppose 
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, for x > 0.  (a)  Sketch the area represented by g(x).  (b)  Use FTC I to find 
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.  (c)  Use FTC II and the power rule to find 
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14. A honeybee population starts with 100 bees and increases at a rate of r(t) bees per week, where t is measured in weeks.  Suppose a is a positive integer.  What does the quantity 
[image: image29.wmf]dt

t

r

a

)

(

100

0

ò

+

 represent?  Explain.
15. The acceleration function (in m/s2) is a(t) = 2t - 8.  Suppose v(0) = 15 m/s.  


a.  Find v(t).


b.  Graph v(t).


c.  Find the distance traveled for 0 ≤ t ≤ 10.  [Ok to evaluate this integral on your calculator.]
16. Practice lots of integrals!  See all problems assigned for homework, examples worked in book and in class, odd problems from Chapter 5, etc.  Here is a selection of practice problems.
a. 
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 (evaluate by FTC II and properties of integrals, not by calculator)

f. 
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