CS 225
Exam 4 Study Guide

4/12/12
Exam 4 will be given on Wednesday 4/18/12 (2:00 – 5:00 PM). It will cover the following:
· 6.4 Heaps & heapsort (transform-and-conquer)
· 8.1 Binomial coefficients (dynamic programming)

· 9.1 Prim’s algorithms (greedy technique)

· 9.4 Huffman trees

· 11.1 Lower-bound arguments

· 11.2 Decision trees

· 11.3 P, NP, and NP-complete problems
You should study by reviewing the reading, lab assignments, and homework problems. Suggested questions to focus on:
· What are the five desirable characteristics of an algorithm? Which two are most important, and why?

· 6.4: Be able to analyze pseudocode for standard heap algorithms such as percolateUp, percolateDown, deleteMax, and insert.
· 6.4: Be able to write your own code for the following heap algorithms, assuming that percolateDown has already been implemented:

· percolateUp

· insert

· findMax

· deleteMax

· heapSort

· 8.1: Be able to explain what is distinctive about a “dynamic programming” algorithm.

· 8.1: Be able to write pseudocode for and analyze the time efficiency of the brute-force recursive algorithm for computing C(n,k):
[image: image1.wmf])

,

1

(

)

1

,

1

(

)

,

(

k

n

C

k

n

C

k

n

C

-

+

-

-

=

· 8.1: Be able to write pseudocode for and analyze the time efficiency of the dynamic programming solution to computing C(n,k) (see p.282).
· 9.1: Describe the three characteristics of a greedy algorithm.

· 9.1: Understand Prim's algorithm and be able to apply it to a specific graph. What problem does it solve?

· 9.4: Understand Huffman's algorithm and be able to apply it to a given alphabet’s frequency table. What problem does it solve?

· 9.4: Understand how to find the compression ratio for a given encoding scheme.

· 11.1: Understand what is meant by a lower bound efficiency class for a given problem, and what it means for such a lower bound to be tight.

· 11.1: Be able to find the "trivial" lower bound efficiency class for a given problem.

· 11.2: Be able to derive a formula for the minimum possible height of a binary tree with a given number of leaves (p.387), and apply this formula to put a lower bound on the worst-case number of binary decisions needed to decide a given problem.

· 11.2: Be able to derive a lower bound on the height of a binary decision tree for any comparison-based sorting algorithm (p.388), and apply this formula to put a lower bound on the worst-case number of comparisons needed to sort an n-element list.

· 11.2: Be able to draw and analyze a binary decision tree for binary search on a small array.

· 11.3: What is a tractable problem? intractable problem? undecidable problem?
· 11.3: Define/compare/contrast: Class P ("polynomial"); class NP ("polynomially verifiable" or "nondeterministic polynomial"); class NPC ("NP-complete").

· 11.3: Be familiar with some famous problems which might / might not be in P (p.396).

· 11.3: Does P = NP? See problem #10, p.403.
_1395655887.unknown

