CS 225J -- Algorithms





Exam 4 Practice Problems
April 2013

1.  Greedy Graph Algorithms.
a.  Clearly state the problem which is solved by Prim's algorithm.  What is the input?  What is the return value?
b.  Apply Prim's algorithm to the following graph, starting with vertex a.  Make a list of the tree edges, in the order in which they are added to the tree by the algorithm.  
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c.  Prim’s is a “greedy” algorithm.  What are the distinguishing features of a greedy algorithm?
d.  Repeat (b) using Kruskal's algorithm.  Show the step-by-step construction of the tree.

e.  Use Dijkstra's algorithm to find the shortest path lengths from vertex a to all other vertices.  Report the path lengths only; you don't have to show the operation of the algorithm step-by-step. 
2. Write Java code to implement the numComponents method of our Graph class (Lab 10).  Adapt the DFS/dfs algorithms from Chapter 5.  If G is a graph, G.numComponents( ) will return an int representing the number of connected components in graph G.
3.  Fill in the blank with the appropriate mathematical expression:  
"If a problem is to be solved using a binary decision process, and if there are n possible answers to the problem, then the binary decision tree must have a height of at least _________________ ."  What does this tell us about the best possible time efficiency of any algorithm for solving such a problem?
4.  Consider the sorting problem:  "Given an array of comparable values, 
A[0..n-1], sort the array into increasing order using key comparisons."
a.  Compute the "trivial" lower bound time efficiency class for any such sorting algorithm.  Give the big omega class (since it’s a lower bound) and explain your analysis clearly.

b.  There are n! (n factorial) possible orderings of a list of n values.  Use this fact to compute the "information-theoretic" lower bound worst-case time efficiency class for any sorting algorithm which works by making pairwise comparisons.  Give the big omega class and explain your analysis clearly.  Is this a "tight" lower bound?  Explain.
c.  Because there are 3! possible orderings, a decision tree of depth at least  _______  is required to sort a list of three elements (information-theoretic lower bound).  Draw a decision tree for an optimal algorithm to sort a list of three elements, 
A = [a, b, c], using pairwise comparisons.
d.  Is the information-theoretic lower bound always achievable in practice?  Explain.

5.  A decision problem is a problem which has a boolean (yes/no) answer.  For example, given an integer n, we might ask, "Is n prime?"  That would be a decision problem.

a.  Explain what it means for a decision problem to be undecidable.

b.  Explain what it means for a decision problem to be in the class P.

c.  Explain what it means for a decision problem to be in the class NP.

d.  Is every problem in NP also in P?  Explain.
e.  Is every problem in P also in NP?  Explain.
6.  Consider the subsets problem:  "Given a (possibly very large) set S of size n, list all the subsets of S."  Assume the set is already in memory; don't count the time to input the data.

a.  Find the trivial lower-bound time efficiency class.  Explain.

b.  Is this a tractable or an intractable problem?  Explain.

7.  Suppose that you go to graduate school in a couple years and discover a polynomial-time algorithm to decide a problem in the class NPC.  You will be instantly famous among computer scientists.  Why?  What should we conclude if there is a problem in NPC which is also in P?
8.  Consider the minimum spanning tree problem:  "Given a (possibly very large) connected weighted graph G with n vertices, find a minimum spanning tree for G."  Assume the graph representation is already in memory; don't count the time to input the data.  

a.  Find the trivial lower-bound time efficiency class.  Explain.

b.  Time required for Prim's algorithm to solve this problem using reasonable data structures is O(|V|2) [the theta class depends on the specific data structures.]  Is this a tractable or an intractable problem?  Explain.
9.  Consider the m-coloring problem:  "Given a graph, and a positive integer m, is there a way to color the vertices of the graph with m colors such that adjacent vertices will never have the same color?"  
a. Show that the following graph can be 3-colored.  
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b.  Can the graph in (a) be 2-colored?  Explain.

c.  Convince me that the m-coloring problem is in NP; clearly describe the algorithm which demonstrates this fact.
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