CS 225J -- Algorithms

Exam 3 Sample Questions
(Not exhaustive of all possible questions!)
1. RPM. Recall the algorithm called Russian Peasant Multiplication, or RPM, for multiplying two positive integers, m and n, where m ≤ n.

a. Complete the following table for computing 37*65 by RPM:

	m
	n
	r

	37
	65
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Result (show how it's found from the table): _____________________________
b. Which of our algorithm design techniques best describes this algorithm ?
c. Each line you have to add to the table is "1 step." For example, you should have found it takes 5 steps to calculate 37*65 by RPM. Write a recurrence relation for S(m), the number of steps needed to calculate m*n by RPM:

d. What is the big-theta class for the number of steps needed to calculate m*n by RPM? ________________ Justify:
2. Heaps.
a. Construct a heap for the array [9, 11, 14, 2, 8, 17, 13] using the bottom-up algorithm (“heapify” the array). Show all the major steps in the process.
b. Construct a heap for the array [9, 11, 14, 2, 8, 17, 13] using the top-down algorithm (successive key insertions). Show all the major steps in the process.
c. Generally speaking, which of the two methods for building a heap from an array is more time-efficient? ________________________
d. Describe the standard algorithm for implementing "deleteMax" in a heap. Illustrate your description by drawing a heap with 7 elements (use 7 different integer values for the nodes) and showing how it will look before, during, and after "deleteMax" is called.
e. What is the time efficiency (big theta class) for "deleteMax" in a heap? _______
3. More heaps.
a. What is the exact height of a heap with n elements?
b. What is the exact number of leaves in a heap with n elements?
c. What are the two requirements for a binary tree of comparable values to be a "heap"?
d. Describe in English what it means to "percolate up" (or “heapify up”) from position i in a heap. Include a description of when the process should end.
e. Recall the array-based heap implementation we discussed in class. If the underlying array is H[0..n], we store the heap elements in locations 1 thru n, leaving H[0] unused. Write pseudocode to implement a "percolateUp" method for percolating up in a heap from position i. Assume the underlying array H and its size, H.size(), are available to the percolateUp method.
ALGORITHM PercolateUp(i)

// Percolate up from a given position in the heap

// Input: a position number i, 1 <= i <= n

// Output: none (but H will probably be altered)
4. Presorting. Assume all searches will be successful.
a. Describe an efficient presorting algorithm for finding a value K in an array
A[0..n-1].

b. What is the expected running time (big theta class) for the algorithm in part (a)?

c. Describe a reasonable brute-force algorithm for finding a value K in an array
A[0..n-1].

d. On average, how many comparisons will be needed (exact value and big theta class) for the algorithm in part (c)?

e. If only one search is required, which algorithm is more efficient on average, presorting or brute-force?

f. If many successive searches are to be made in the same array, which algorithm will be more efficient? Explain.

5. Insertion sort (use the standard version).
a. Apply insertion sort to sort the list Z, E, B, R, A, S . Write the array in its original order, then rewrite the array once for each iteration of the outer for loop of the algorithm.

b. What is the "worst-case" input for insertion sort? Why?
c. What is the big-theta class, worst-case, for the number of key comparisons; tell why (briefly).

d. What is the "best-case" input for insertion sort, and how many key comparisons are made in this case (exact number, not big theta)?

e. On input [3, 4, 5, 6, 7, 8, 9, 2], which of the following sorting algorithms will be most time-efficient? Choose from: selection sort, insertion sort, and bubble sort.

6. Fake coin problem: Among n identical-looking coins, one is lighter than all the others. Using a balance scale, we have to determine which coin is fake.

a. Describe the divide-into-two algorithm for the fake-coin problem (no pseudocode required, just make your description clear).

b. About how many weighings will be required (big theta class) to find the fake coin among n coins using the divide-into-two algorithm? (justify)

7. A Record is a pair (key,value) where key is a unique identifier, such as an ID number, and value contains the associated information of interest to the user. For example, a student record at HC would have key = student ID number, and value = (last name, first name, home address, class level, current schedule, etc…).
We have n many records to keep track of. We need to support the following operations: find(key), delete(key), insert((key,value)).

a. Suppose we store our records in an unordered array A[0..n-1]. Discuss the average time efficiency (big theta class) for each of the operations: find, delete, insert. Assume finds and deletes are successful (they given key actually exists in the array).
b. Suppose we store our records in a sorted array A[0..n-1] and use binary search to retrieve the record with a given key. Discuss the average time efficiency (big theta class) for each of the operations: find, delete, insert. Assume finds and deletes are successful (they given key actually exists in the array).

c. Suppose we store our records in a separate-chaining hash table H[0..n-1]. The hash function is h(k) = k mod n.

i. Outline the steps required for insert((key,value)). How many key comparisons are needed? What is the theta class for a hash table insert?
ii. Outline the steps required for a successful find(key). How many key comparisons are needed? What is the theta class for a hash table find?
iii. Outline the steps required for a successful delete(key). How many key comparisons are needed? What is the theta class for a hash table delete?
d. Which of our algorithm design techniques best describes hashing? Explain.

e. If the hash function distributes n keys among m cells of the hash table about evenly, each list will be about n/m keys long. The ratio n/m is called the _________ _________ of the hash table, and plays a critical role in the efficiency of hashing. For separate chaining, we want the value of n/m to be close to the value _____ .

i. Explain why n/m close to 0 is inefficient.
ii. Explain why n/m very large is inefficient.

8. Compute C(7,5) by applying the dynamic programming algorithm. Show the table of values created by the algorithm, and indicate the result of the computation.

a. What is the space efficiency of this algorithm in computing C(n,k)?
b. Explain how to improve space efficiency by reducing the number of columns – be specific.
c. Explain how to improve space efficiency by storing only 2 rows of information – be specific.
d. In general, what are the main features of a “dynamic programming” algorithm?

9. Depth-first search.

a. Write pseudocode to implement depth-first search of a graph G.
b. Trace the execution of your pseudocode on the graph shown in Figure 1.9 (p.32), starting from vertex a; assume all ties are broken by alphabetical order.

c. Draw the resulting DFS tree/forest.
d. Which of our algorithm design techniques best describes DFS? Explain.

3

