CS 225
Exam 3 Study Guide

3/25/13
Exam 3 will be given in class on Friday 3/29/13. It will cover nine sections and five design techniques:
· 4.2 Quicksort (divide-and-conquer) – we had a handout on this, 2-13-13
· 4.4 Binary tree algorithms

· 5.1 Insertion sort (decrease-and-conquer)
· 5.2 DFS & BFS

· 5.5 Decrease by a constant factor

· 6.1 Presorting (transform-and-conquer)

· 6.4 Heaps & heapsort

· 7.3 Hashing (space/time tradeoffs)

· 8.1 Binomial coefficients (dynamic programming)
Suggested topics to focus on:
· 4.2: For Quicksort, be able to apply the algorithm as shown in our handout dated
2-13-13. This partition method uses the value in the "middle" position as the pivot value. Also, show the tree of recursive calls for quicksort (p.132); "s", the split position, is the value returned by the partition method.

· 4.4: Write Java code for any of the divide-and-conquer methods we wrote for Lab 7 (BinaryTree).
· What are the three major variations of “decrease and conquer”? Give a familiar example of each.

· 5.1: Write and analyze Java code for insertion sort, and trace its execution on a given example.
· 5.2: Write pseudocode to implement depth-first search of a graph (as shown on p.166), and trace its execution on a given example.
· 5.5: Explain and demonstrate the algorithm for Russian Peasant Multiplication and analyze its efficiency.
· 6.1: What are the three major variations of “transform and conquer”? Give a familiar example of each.

· 6.1: Use presorting to write and analyze efficient algorithms for problems such as checking element uniqueness in an array, searching for a given value v in a given array of sortable items, or finding the median of a list of n numbers. (Where reasonable, compare efficiency of the presorting algorithm with efficiency of the brute-force algorithm).
· 6.4: Analyze the time efficiency for standard heap algorithms such as percolateUp, percolateDown, deleteMax, and insert.
· 7.3: Define the load factor of a hash table and explain why, for separate chaining, it should be close to 1 for the best overall use of time and space.

· Analyze the average-case efficiency of a separate chaining hash table with load factor close to 1. What about the load factor for closed hashing?
· 7.3: Explain how to use linear probing as a collision-resolution strategy in closed hashing. Also, how would we implement the find method?
· 8.1: What is distinctive about a “dynamic programming” algorithm?
· 8.1: Write Java code for a dynamic programming solution to computing the binomial coefficient C(n,k) and discuss its running time.
