CS 225
Exam 3 Study Guide

3/22/12
Exam 3 will be given in class on Wednesday 3/28/12. It will cover seven sections and four design techniques:
· 5.1 Insertion sort (decrease-and-conquer)
· 5.2 DFS & BFS

· 5.5 Decrease by a constant factor

· 6.1 Presorting (transform-and-conquer)

· 6.4 Heaps & heapsort

· 7.3 Hashing (space/time tradeoffs)

· 8.1 Binomial coefficients (dynamic programming)
You should study by reviewing the reading and the assigned homework problems. Suggested topics to focus on from the reading:
· What are the three major variations of “decrease and conquer”? Give a familiar example of each.

· 5.1: Be able to write and analyze the pseudocode for insertion sort (as shown on p.161), and trace its execution on a given example.
· 5.2: Be able to write pseudocode to implement depth-first search of a graph (as shown on p.166), and trace its execution on a given example.
· 5.5: Be able to write and analyze algorithms for solving the Josephus problem in three different ways: (a) brute force; (b) decrease-by-half; (c) problem reduction
· 5.5: Be able to explain the algorithm for Russian Peasant Multiplication and analyze its efficiency.
· 6.1: What are the three major variations of “transform and conquer”? Give a familiar example of each.

· 6.1: Be able to use the idea of presorting to write and analyze efficient algorithms for problems such as checking element uniqueness in an array, searching for a given value v in a given array of sortable items, or finding the median of a list of n numbers (where reasonable, compare efficiency of the presorting algorithm with efficiency of the brute-force algorithm).
· 6.4: Be able to analyze pseudocode for standard heap algorithms such as percolateUp, percolateDown, deleteMax, and insert.
· 7.3: Explain why hashing is included in Chapter 7, whose theme is “Space and Time Tradeoffs.” Be specific.

· 7.3: Be able to define the load factor of a hash table and explain why, for separate chaining, it should be close to 1 for the best overall use of time and space.
· 7.3: Know, and be able to explain, the average-case efficiency of a separate chaining hash table with load factor close to 1. What about the load factor for closed hashing?
· 7.3: Know, and be able to explain, how to use linear probing as a collision-resolution strategy in closed hashing. Most importantly, how do we implement the find method?
· 8.1: Be able to explain, what is distinctive about a “dynamic programming” algorithm.

· 8.1: Be able to write pseudocode for the dynamic programming solution to computing C(n,k) (p.282) and prove that its running time is O(nk).
