CS 225
Exam 2 Study Guide

2/26/10
Exam 2 will be given in class on Friday 3/12/10. It will cover the following sections from our textbook:

· 2.4 Mathematical analysis of recursive algorithms

· 3.1 Selection sort and bubble sort (brute force)
· 3.2 Sequential search and brute-force string matching
· 4.1 Mergesort (divide and conquer)

· 4.3: Binary Search (decrease and conquer)
· 4.4 Binary tree traversals and related properties (divide and conquer)

· 5.1: Insertion Sort (decrease and conquer)

· 5.2: Depth-first search and breadth-first search (decrease and conquer)

· 5.4: Algorithms for generating combinatorial objects (decrease and conquer)
· 5.5: Decrease-by-a-Constant-Factor Algorithms (decrease and conquer)
You should study by reviewing the reading and the assigned homework problems. Suggested topics to focus on from the reading:

· 2.4: be able to write the recurrence relation for time requirements of a recursive algorithm
· 2.4: be able to solve recurrence relations, exactly or by the Master Theorem (you don't need to memorize the theorem)

· 3.1: be able to analyze the code for selection sort and bubble sort (code would be provided)
· 3.2: be able to write and analyze the code for brute-force string matching

· 4.1: be able to write the code for MergeSort, informally describe the Merge algorithm, and analyze the Merge algorithm (worst-case) for number of key comparisons

· 4.3: be able to write and analyze the code for binary search in a sorted array (for the analysis, assume n = 2k)
· 4.4: be able to write and analyze the code for recursively finding the height of a binary tree, the number of nodes in a binary tree, or traversing a binary tree in a given order
· 5.1: be able to write and analyze the code for insertion sort
· 5.2: be able to write pseudocode to implement depth-first search or breadth-first search of a graph, and trace the execution of these algorithms on a given example
· 5.4: be able to write pseudocode for generating permutations via Johnson-Trotter, and trace its execution on a given example
· 5.5: be able to write and analyze pseudocode for solving the fake coin problem

· 5.5: be able to explain the algorithm for Russian Peasant Multiplication and analyze its efficiency
