CS 225
, 2-1-10

Exam 1 sample problems
1. Pretend you're talking with a student in CS 110. Explain to him/her, what is an "algorithm"? Also, what are the five qualities which we want our algorithms to possess?

2. What is the first step in designing any algorithm? _________________________

3. Recount the five-step procedure we learned for analyzing the time efficiency of a non-recursive algorithm.

4. Write a simple algorithm for computing floor(
[image: image1.wmf]n

), the largest integer whose square is less than or equal to n. Use only the four basic arithmetic operations. I’ve provided the initial comments and header.

ALGORITHM Root (n)

// Determines the value of the floor of root n

// Input: a positive integer n

// Output: an integer value for floor of root n

5. For each of the following functions, indicate by how much the function’s value will increase if its argument is increased fourfold (from n to 4n). In each case use an additive increase, a multiplicative increase, or an exponential increase, relative to the original value; but make it clear which you are using.

a. log2 (n)

b.
[image: image2.wmf]

n

c. 3n
d. n3
e. 3n
6. For each of the following functions, indicate the asymptotic growth-rate class ((g(n)) to which the function belongs. Use the simplest function g(n) possible.

a. (3n2 + 5n – 7)10
b. log2 (n2+4n)

7. Consider the element uniqueness problem: Determine whether all the elements in a given array are distinct. This problem can be solved by the following brute force algorithm.
ALGORITHM UniqueElements (A[0..n – 1])

/* Determines whether all the elements in a given array are

 * distinct

 * Input: An array A of n comparable elements

 * Output: Returns “true” if no two elements are equal,

 * otherwise “false”

 */
for (i = 0; i < n-1; i++)

for (j = i+1; j < n; j++)

if (A[i] == A[j]) // comparison
return false;

return true;
a. Describe the best-case input for this algorithm.
b. Describe the worst-case input for this algorithm.
c. Find a function Cworst(n) for the exact number of comparisons carried out in the worst case, simplify your result as far as possible, and find the big theta class of that function.

8. (a) What does it mean for a sorting algorithm to be stable?
(b) Show the values held in the array "count" during the operation of the following algorithm when the input is the list A = 60, 35, 18, 60, 12, 50.
· count[0] =
· count[1] =

· count[2] =

· count[3] =

· count[4] =

· count[5] =
 ALGORITHM SortIt(A[0..n-1])
// Sorts an array by comparison counting
 // Input: An array A of n comparable elements

// Output: An array S of A's elements, in ascending order
for(i = 0 to n-1)
 count[i]=0;

for(i = 0 to n-2)

 for(j = i+1 to n-1)

 if(A[i] <= A[j]) // comparison
 count[j]++;

else

 count[i]++;

for(i = 0 to n-1)

 S[count[i]] = A[i];

return S;

(c) Is the SortIt algorithm stable? ______ Is it "in place"? _____
(d) Write a sigma (∑) expression for the number of comparisons C(n) which the algorithm makes when the input is an array of length n.

(e) Find a closed form for C(n) and also find the big-theta class for C(n).

9. Compute the following sums (which depend on n) and indicate the asymptotic growth-rate class ((g(n)) to which the function belongs. Use the simplest function g(n) possible.

a.
[image: image3.wmf]å

=

n

i

5

10

b.
[image: image4.wmf]å

=

n

i

i

2

3

c. 4 + 8 + 16 + 32 + ... + 2n+2
d.
[image: image5.wmf]å

-

=

2

0

2

n

i

i

e.
[image: image6.wmf]å

å

=

-

=

n

i

n

i

j

1

1

1

10. True or false? Give a convincing justification for each answer.
a.
[image: image7.wmf]))

(

(log

)

(

log

3

2

n

n

Q

Î

b.
[image: image8.wmf])

2

(

2

1

+

Q

Î

n

n

c.
[image: image9.wmf])

3

(

2

n

n

Q

Î

d.
[image: image10.wmf])

2

(

2

n

n

n

Q

Î

1

_1326282835.unknown

_1326282977.unknown

_1326282986.unknown

_1326282875.unknown

_1285654532.unknown

_1326282051.unknown

_1326282089.unknown

_1326282112.unknown

_1326281907.unknown

_1159499998.unknown

