Math 143

Definitions for Relations, Equivalence Relations (Chapter 5)
Let S be any set.  

1. A relation on S is a subset R of S x S.  For example, if 
S = {1, 2, 3} then the "less than" relation is
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2. If (x,y) is in the relation R then we write "x~y" and say, "x relates to y."

3. A relation on S is...

a. reflexive if for all x in S, x relates to x.

b. symmetric if for all x and y in S, if x relates to y then y relates to x.

c. transitive if for all x, y, and z in S, if x relates to y and y relates to z then x relates to z.

4. A relation R on S is an equivalence relation if R enjoys all three of the above properties (R is reflexive and symmetric and transitive).  In this case, we use "[x]" to denote the equivalence class of x; 
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5. For example, the relation "congruence modulo 2" is an equivalence relation on Z.  If x is even then [x] = all even integers, since all the even integers are congruent to each other mod 2 (the difference of even integers is always divisible by 2); similarly, if x is odd then [x] = all odd integers.  This relation has just two different equivalence classes, but in general, a relation can have any number of equivalence classes (including an infinite number).
6. Give an example of an equivalence relation on Z which has an infinite number of equivalence classes.
7. A partition of S is a set of subsets of S indexed by some set I, P = {Ai : i is in I}, such that...

a. every subset Ai is non-empty;

b. the subsets "exhaust" S (their union is equal to all of S);

c. the subsets are pairwise disjoint:  for all i ≠ j  in I, 
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8. Lemma:  Let R be an equivalence relation on S.  Let x and y be elements of S.  If [x] and [y] are not disjoint, then [x] = [y].

9. Theorem:  Let R be an equivalence relation on S.  If
P = {[x] : x is in S} (P is the set of equivalence classes of R) then P is a partition of S.
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