Math 143
Weds 10/13/10

Sec 20 & 21 Board Work Assignments

1. (Colby -- 10/14)  Prove by method of smallest counterexample:  For all natural numbers n, 
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2. (Adam -- 10/14)  Prove by induction:  Let x be a real number, x ≠ 1.  Then for all natural numbers n with n  ≥ 1, 
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3. (Dung -- 10/14)  Prove by method of smallest counterexample:  For all natural numbers n with n  ≥ 1, 
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4. (Scott -- 10/14)  Prove by induction:  For all natural numbers n with n  ≥ 1, 
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5. (Moana -- 10/14)  Prove by method of smallest counterexample:  For all natural numbers n with n  ≥ 4, 
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6. (Darrin -- 10/15)  Prove by induction:  For all natural numbers n with n  ≥ 4, 
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7. (CJ -- 10/15)  Prove by method of smallest counterexample:  For all natural numbers n with n  ≥ 1, 
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8. (Tina -- 10/15)  Prove by induction:  For all natural numbers n with n  ≥ 1, 
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9. (Aaron -- 10/15)  Prove by method of smallest counterexample:  For all natural numbers n, 
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10. (Nathan -- 10/15)  Prove by induction:  For all natural numbers n with n  ≥ 4, 
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Outline:  Proof by method of smallest counterexample.


Theorem:  For all n in S, P(n).  [S must be well-ordered.]


Proof:  

· Assume the theorem is false, so there is at least one counterexample in S.

· Let n be the smallest counterexample in S.

· min(S), the smallest element in S, is NOT a counterexample because it makes P(n) true [justify]; so n > min(S).
· Consider n-1, or the largest element of S which is less than n.  Since n is the smallest counterexample, n-1 is NOT a counter example.  Use the fact that P(n-1) is true to show P(n) is true.

· Contradiction!  P(n) is false, since n is a counterexample, but also P(n) is true as shown above.  Therefore, the statement has no counterexamples in S.  The theorem is true.
Outline:  Proof by induction.


Theorem:  For all n in N with 
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Proof:  

· First check the base case:  P(n0) is true because ... [justify]

· Let n in N be arbitrary (
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· Assume P(n) is true.

· Work forward with valid deductions to show that P(n+1) is true.

· Thus P(n) implies P(n+1).  By the principle of mathematical induction, P(n) is true for all n with 
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