Math 217
 Introduction to the Binomial Distribution
We have seen that the normal density curve is used to model a symmetric, unimodal distribution (one with a "bell-shaped" histogram) which has no extreme outliers.  This works best for quantities which are measured on a continuous scale, such as temperature, distance, or mass.  
If we are trying to model a situation which only results in whole number values, there are two popular options: (i) use a continuous model, such as the normal density curve, but make a continuity correction; (ii) use a discrete density function which is appropriate to the situation.
A. Continuity Correction
Here is an example of the first approach, using a continuity correction when modeling a discrete distribution with a continuous density curve.  ACT scores, which are whole numbers in the range 1 through 36, are approximately normally distributed with mean 20.8 and standard deviation 4.8.  Provide a sketch of the normal distribution N(20.8, 4.8) in the space below:  

Without the continuity correction, our model may not match reality very well.  Consider using the normal distribution N(10.8, 4.8) to answer the question, what proportion of students score 21 on the ACT?  Since P(X = 21) corresponds to a line segment under the normal curve, the proportion is zero!  In fact the model would tell us "zero" for every integer 1 through 36.  This is not right, since everyone scores one of these values.
With the continuity correction, we reason as follows:  scale values 20.5 through 21.5 under the normal curve should correspond with an actual ACT score of 21 (imagine making a histogram for the ACT distribution, using bars of width 1 centered at the integers).  So the proportion of students scoring 21 is more appropriately modeled by P(20.5 < X < 21.5).  Finish this computation using Table A; you should find that about 8.4% of students score 21 on the ACT, according to our model.
Now consider the question, what proportion of ACT scores fall below 16?  Without the continuity correction:
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With the continuity correction, we imagine the bar for 15 as extending from 14.5 to 15.5, so 15.5 is a better cut-off for this left tail area:
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The continuity correction made a difference of about 2.3 percentage points in our answer.  In general, if the continuous density curve is a good fit to the histogram, then using the continuity correction should improve the accuracy of the model.
B.  Discrete Density Functions

A discrete density function is based on a specific set of possible values which are discrete, that is, they are separated from each other on the number line.  This is different from a continuous density function, such as a normal distribution, which can have the entire set of real numbers as its domain.  There is no "separation" between the different values in the domain of a continuous density function.

When a variable only takes whole number values, it might make sense to model it with a discrete density function based on the possible values for the variable.  Here are some examples to illustrate the idea.

Example B1:  Rolling a fair die (one roll at a time).  Consider rolling a fair 6-sided die.  You roll the die and write down the result.  Roll the die again and write down the result.  Repeat many, many times.  You have generated a set of data which should follow a discrete uniform distribution, where the proportion for each possible value (1 thru 6) is 1/6.
A discrete density function is usually shown in a table.  Let X represent the variable "result of rolling a fair six-sided die once"; so X can take whole number values from 1 through 6.  Here is a table showing the model for this example:
	x
	1
	2
	3
	4
	5
	6

	P(X = x)
	1/6
	1/6
	1/6
	1/6
	1/6
	1/6


Example B2:  Tossing a fair coin (two tosses at a time).  Consider tossing a fair coin twice and writing down the number of times heads appeared (0, 1, or 2).  Again toss the coin twice, and write down the number of heads (0, 1, or 2).  Repeat many, many times.  You have generated a set of data, a long mixed-up list of 0s, 1s, and 2s, which should not follow a uniform distribution (why not?).  In fact, you are twice as likely to get 1 head as you are to get 0 heads or 2 heads.  

The discrete model for the distribution is as follows:  P(0) = 1/4; P(1) = 1/2; P(2) = 1/4.  In table form, if we let X  be the variable "number of heads in two tosses of a fair coin," it looks like this:
	x
	0
	1
	2

	P(X = x)
	.25
	.50
	.25


Example B3:  Tossing a biased coin (two tosses at a time).  Revisit the previous example, but suppose the coin is weighted so that on a single toss it will come up heads 2/5 of the time (40%) and tails 3/5 of the time (60%).  How does this change our discrete density function?  Draw an appropriate tree diagram to justify the following:

	x
	0
	1
	2

	P(X = x)
	.36
	.48
	.16


Example B4:  Tossing a biased coin (three tosses at a time).  Revisit the previous example, but suppose we toss the coin three times in a row before counting up the number of heads.  The coin is still unbalanced, with heads coming up just 2/5 of the time in a single toss.  

Now what should we use for our discrete density function?  Draw an appropriate tree diagram to justify the following:

	x
	0
	1
	2
	3

	P(X = x)
	.216
	.432
	.288
	.064


Example B5:  Tossing a fair coin (ten tosses at a time).  As a final example in this section, consider this situation:  Toss a fair coin ten times; write down the number of heads (0, 1, 2, ..., up to 10).  Repeat many times.  To find the right proportions for the discrete model, you could draw a 10-level 2-branching tree, but this would be a huge amount of work; such a tree has 1,024 "leaves" (nodes at the bottom level of the diagram).  
The smarter way to proceed is to realize the following: situations analogous to counting up heads in a coin-tossing experiment are common in everyday life, so mathematicians have devised a family of discrete density functions to model such situations.  This family is called the binomial distributions.
C.  The Binomial Distributions
The discrete density functions in Examples B2 through B4 belong to a family called the binomial distributions.  Just as there are infinitely many different normal distributions, and a particular one can be specified by choosing the appropriate mean and standard deviation, there are also infinitely many different binomial distributions.  A particular binomial distribution is specified by choosing the appropriate values for parameters p and n.  
In the case of tossing a coin a pre-determined number of times and counting up the number X of heads which appear, p represents the probability of getting heads in a single toss of the coin, and n represents the number of tosses.  If the coin is "fair" or "balanced," p = 0.5.  
The binomial distribution with parameters n and p is abbreviated B(n, p).  In Example B2 we saw the distribution B(2, 0.5); in Example B3 we saw the distribution B(2, 0.4); and in Example B4 we saw the distribution B(3, 0.4).  
Binomial situations are so common that the binomial distributions have been programmed into your TI calculator.  Try the following to find the probabilities for B(2, 0.5):

1. Go to either CATALOG > binompdf or DISTR > binompdf to get started.

2. Store the probabilities in list L1:  binompdf(2, .5) > STO > L1 > enter
3. View list L1:  STAT > Edit

You should see the following values in list L1: .25, .5, .25.  These correspond with the second row of the distribution table in Example B2, that is, the probabilities for X = 0, X = 1, and X = 2.  Repeat the above procedure for Examples B3 and B4 to verify the probabilities for those examples.
To fill in the distribution table for Example B5, first we determine n and p.  We are considering ten tosses:  n = 10.  The coin is fair, so the probability of heads on a single toss is p = .5.  Store the values for B(10, 0.5) in list L1 on your calculator; to 4 decimal places, you should get the following list of probabilities:

	x
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	P(X=x)
	.0010
	.0098
	.0439
	.1172
	.2051
	.2461
	.2051
	.1172
	.0439
	.0098
	.0010


We are rarely interested in actually flipping a coin and counting up the number of heads.  But many situations are similar enough to the coin-flipping experiment that they can be modeled with a binomial distribution.  The binomial distribution B(n, p) will be an appropriate model for a situation if the following are all true (see p.335 in your textbook, the binomial setting):  
1. There are a fixed number (n) of repetitions.
2. The results of the different repetitions are independent of each other.
3. Each repetition results in one of two types of outcome, referred to generically as "success" or "failure."
4. The probability (p) of a success is the same for every repetition (p does not vary).
*** See Example 5.2, p.336. ***
The mean µ and standard deviation σ of a binomial distribution are calculated from the parameters n and p:  If X = B(n, p), then 
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.  The mean predicts the "average" value of the variable, and the standard deviation indicates whether the distribution is clustered close to the mean (small standard deviation) or is more spread out (large standard deviation).

Example C1:  Hundreds of students sit down to take a 6-question multiple-choice quiz.  Unfortunately, the questions are written in some exotic language (ancient Egyptian cuneiform?) which none of the students can make any sense of, so they all guess randomly.  If each question has four options, model the expected distribution of scores on the quiz using an appropriate binomial distribution.  Also find the mean and standard deviation of the model.  What is the probability of a student guessing at least 5 of the answers correctly?
Example C2:  Suppose 20% of HC students drink coffee each morning; call these students "coffee drinkers."  Imagine taking a random sample of 5 HC students and counting up the number X of coffee drinkers in the sample.  Under repeated sampling (over and over again, choose 5 random students and write down the value of X), what distribution of values for X should we expect to see?  Find the mean and standard deviation of the model.  What is the probability of getting a random sample with fewer than 3 coffee drinkers?
Example C3:  Shuffle a standard deck of 52 playing cards.  Randomly draw two cards and count up the number X of red cards.  Repeat many times.  What distribution of values for X should we expect to see?  Is the situation "exactly" binomial, or does it violate one or more of the four requirements? 
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